Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод інтервалів. Раціональні нерівності
Розглянемо функцію Якщо всі нулі чисельника та знаменника відмітити на числовій прямій, то вони розіб’ють її на проміжків. Усередині кожного з них функція неперервна та зберігає знак. Для визначення цього знака достатньо взяти будь-яку точку з цього проміжку та знайти знак функції в цій точці. На практиці для розв’язання нерівності застосовують метод інтервалів. В основу методу інтервалів покладено такі твердження: 1. Якщо – така точка, що показник степеня для виразу є число непарне, то праворуч і ліворуч від (на сусідніх проміжках) функція має різні знаки. Наприклад, маємо функцію . При переході через точки функція змінює знак. 2. Якщо – така точка, що показник степеня для виразу є число парне, то праворуч і ліворуч від (на сусідніх проміжках) функція має однакові знаки. Наприклад, маємо функцію . При переході через точку функція не змінює знак.
|