Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства (умножения матриц).
1) Ассоциативность умножения матриц, т.е., справедливо . Доказательство. Из определения 5 следует, что элемент матрицы равен , а элемент матрицы равен . Равенство следует из возможности изменения порядка суммирования. 2) Дистрибутивность сложения относительно умножения, т.е., , . , . Доказательство следует из определения суммы и произведения матриц. 3) . Доказательство. Пусть , и . Тогда . Здесь – символ Кронекера. . 4) . 5) . Доказательство свойств 4)-5) проводится аналогично свойству 3). 6) . Теорема 2. Множество квадратных матриц порядка над кольцом относительно операций сложения матриц и умножения матриц образует кольцо с единицей. Доказательство. Из теоремы 1 – абелева группа. Так как любые матрицы из согласованы умножение определено. Дистрибутивность и ассоциативность умножения следует из свойств 2) и 1). Свойство 3) демонстрирует наличие единицы.■ Замечание. В общем случае произведение матриц не коммутативно. Например, . Но из свойств 4) и 5) умножение квадратной матрицы на и коммутирует. Также коммутирует умножение квадратной матрицы на скалярную. 3о. Блочные матрицы. Пусть матрица при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых является матрицей меньших размеров и называется блоком исходной матрицы. В этом случае рассматривается как некоторая новая, блочная матрица , элементами которой являются блоки указанной матрицы ( – элементы матрицы, поэтому заглавное). Здесь – номер блочной строки, – столбца. Например, если , то , , , . Замечательным является факт, что операции с блочными матрицами совершаются по тем же правилам, что и обычными, только в роли элементов выступают блоки. Действительно, если , то , где вычисляется по обычному правилу умножения матрицы на число. Аналогично, если и имеют одинаковые порядки и одинаковым образом разбиты на блоки, то сумме отвечает блочная матрица : . Для умножения на необходимо согласовать их разбиение на блоки, т.е. число столбцов каждого блока равно числу строк блока . Тогда . Для доказательства необходимо расписать правую и левую части в терминах обычных элементов матриц . Пусть . Если , то и , откуда следует, что , что и требовалось доказать. Пример. Пусть , , т.е., , , где , . Тогда . Аналогично находятся остальные . В результате получаем . В качестве применения блочных матриц рассмотрим Определение 6. Прямой суммой квадратных матриц порядков соответственно называется квадратная матрица порядка : . Обозначение: .
|