Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Интерполирование.
Задача приближения (аппроксимации) функций возникает и как самостоятельная, и при решении многих других задач. Простейшая ситуация, приводящая к приближению функций, заключается в следующем. При некоторых значениях аргумента х0, х1, …хn, называемых узлами, заданы значения функции yi=f(xi), i=0, 1..., n. Требуется восстановить значения функции при других x. Подобная же задача возникает при многократном вычислении на ЭВМ одной и той же сложной функции в различных точках. Вместо этого часто бывает целесообразно вычислять значения этой функции в небольшом числе характерных точек xi, а в остальных точках вычислять ее значения по некоторому более простому правилу, используя информацию об уже известных значениях yi. Другими распространенными примерами приближения функций являются задачи определения производной f'(x) и интеграла Классический подход к решению подобных задач заключается в том, чтобы, используя имеющуюся информацию о функции f(x), рассмотреть другую функцию При выборе класса, к которому принадлежит аппроксимирующая функция Вопрос о близости аппроксимируемой и аппроксимирующей функций решается по-разному. Если параметры, от которых зависит функция Наличие большого количества различных способов приближения объясняется многообразием различных постановок задачи. Далее мы рассмотрим лишь один раздел теории приближения – интерполирование многочленами. Аппарат интерполирования многочленами является важнейшим аппаратом численного анализа. На его основе строится большинство численных методов решения других задач.
|