Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Интерполяционный полином Ньютона с разделенными разностями
Запишем интерполяционный полином Лагранжа в следующем виде: (4.15) где L0(x) = f(x0)=y0, а Lk(x) – интерполяционный полином Лагранжа степени k, построенный по узлам x0, x1, …, xk. Тогда есть полином степени k, корнями которого являются точки x0, x1, …, xk-1. Следовательно, его можно разложить на множители (4.16) где Ak – постоянная. В соответствии с (4.14) получим (4.17) Сравнивая (4.16) и (4.17) получим, что и (4.15) примет вид (4.18) который носит название интерполяционного полинома Ньютона с разделенными разностями. Этот вид записи интерполяционного полинома более нагляден (добавлению одного узла соответствует появление одного слагаемого) и позволяет лучше проследить аналогию проводимых построений с основными построениями математического анализа. Остаточная погрешность интерполяционного полинома Ньютона выражается формулой (4.8), но ее, с учетом (4.13), можно записать и в другой форме , т.е. остаточная погрешность может быть оценена модулем первого отброшенного слагаемого в полиноме Nn(x*). Вычислительная погрешность Nn(x*) определится погрешностями разделенных разностей. Узлы интерполяции, лежащие ближе всего к интерполируемому значению x*, окажут большее влияние на интерполяционный полином, лежащие дальше – меньшее. Поэтому целесообразно, если это возможно, за x0 и x1 взять ближайшие к x* узлы интерполирования и произвести сначала линейную интерполяцию по этим узлам. Затем постепенно привлекать следующие узлы так, чтобы они возможно симметричнее располагались относительно x*, пока очередной член по модулю не будет меньше абсолютной погрешности входящей в него разделенной разности.
|