Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Интерполяционный полином Ньютона с разделенными разностями






Запишем интерполяционный полином Лагранжа в следующем виде:

(4.15)

где L0(x) = f(x0)=y0, а Lk(x) – интерполяционный полином Лагранжа степени k, построенный по узлам x0, x1, …, xk. Тогда есть полином степени k, корнями которого являются точки x0, x1, …, xk-1. Следовательно, его можно разложить на множители

(4.16)

где Ak – постоянная.

В соответствии с (4.14) получим

(4.17)

Сравнивая (4.16) и (4.17) получим, что и (4.15) примет вид

(4.18)

который носит название интерполяционного полинома Ньютона с разделенными разностями.

Этот вид записи интерполяционного полинома более нагляден (добавлению одного узла соответствует появление одного слагаемого) и позволяет лучше проследить аналогию проводимых построений с основными построениями математического анализа.

Остаточная погрешность интерполяционного полинома Ньютона выражается формулой (4.8), но ее, с учетом (4.13), можно записать и в другой форме

,

т.е. остаточная погрешность может быть оценена модулем первого отброшенного слагаемого в полиноме Nn(x*).

Вычислительная погрешность Nn(x*) определится погрешностями разделенных разностей. Узлы интерполяции, лежащие ближе всего к интерполируемому значению x*, окажут большее влияние на интерполяционный полином, лежащие дальше – меньшее. Поэтому целесообразно, если это возможно, за x0 и x1 взять ближайшие к x* узлы интерполирования и произвести сначала линейную интерполяцию по этим узлам. Затем постепенно привлекать следующие узлы так, чтобы они возможно симметричнее располагались относительно x*, пока очередной член по модулю не будет меньше абсолютной погрешности входящей в него разделенной разности.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал