Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методом Зейделя






 

II. ЦЕЛЬ РАБОТЫ

Приобретение навыков решения систем линейных алгебраических уравнений итерационными методами.

 

III. ТЕОРЕТИЧЕСКАЯ СПРАВКА

Рассмотрим метод Зейделя.

Пусть система приведена к канонической форме

В методе простой итерации следующее приближение находится по предыдущему путем подстановки в правую часть (1). При этом порядок выбора уравнений значения не имеет.

Согласно методу Зейделя осуществляется разумный выбор порядка уравнений для подстановок и немедленный ввод в вычисления каждого из полученных приближений для неизвестных.

Предположим, что для перехода от приближения к выбран какой-то порядок привлечения уравнений для подстановок. Изменяя, если необходимо, нумерацию уравнений и неизвестных, можно считать, что уравнения для подстановок берутся в порядке роста их номеров. Для каждого шага порядок привлечения уравнений может быть своим. Перестановка уравнений и изменение нумераций влекут изменение матрицы и вектора . Чтобы отметить это, обозначим и для рассматриваемого шага через и .

Итерация в методе Зейделя выполняется в следующем порядке:

После нахождения вектора устанавливается порядок подстановок в уравнения значений и переходят к вычислению вектора и т.д.

Приведем теперь принцип установления порядка привлечения уравнений для подстановок . Можно пытаться улучшить ту составляющую решения, которая найдена наименее точно, чтобы при нахождении всех других составляющих употребить улучшенное ее значение.

О точности можно судить по вектору поправки на шаге : , где . Величины поправок составляющих нумеруют в порядке убывания их модулей, и в том же порядке вычисляют составляющие следующего приближения , сначала ту составляющую, которая отвечает наибольшей по модулю поправке, и т.д.

Рассмотрим более подробно стационарный метод Зейделя, когда при итерациях порядок уравнений сохраняется, а следовательно, сохраняются и . Вычисления по-прежнему проводят по формуле (2).

Разложим матрицу на сумму двух матриц и , где

,

Тогда равенства (2) можно записать в матричной форме в виде

.

Отсюда следует, что

,

а так как определитель матрицы равен единице и она имеет обратную матрицу, то равенство (2) равносильно

Поэтому стационарный метод Зейделя равносилен методу простой итерации, примененному к системе

Последовательность в стационарном методе Зейделя сходится, если для матрицы выполняется одно из неравенств

2) ;

3) .

 

IV. ЗАДАНИЕ

Найти решение системы линейных уравнений, приведенной в лабораторной работе №1. При решении системы использовать стационарный метод Зейделя.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал