Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Факторная и остаточная дисперсии и их отыскание






Пусть на количественный нормально распределенный признак X воздействует фактор , который имеет p постоянных уровней. Будем полагать, что число наблюдений на каждом уровне равно q. Пусть наблюдалось всего значений признака X, где: номер испытания, номер уровня фактора. Пусть также известны значения групповых средних: , а также значе­ние общей средней: .

 

Общей суммой квадратов отклонений измеренных значений от общей средней называется величина, определяемая формулой:

 

.

 

Факторной суммой квадратов отклонений групповых средних от общей средней называется величина, определяемая формулой:

.

Остаточной суммой квадратов отклонений наблюдаемых значений от групповых средних называется величина, определяемая формулой:

.

 

Замечание 1. На практике обычно остаточную сумму квадратов отклонений находят не по приведенной формуле, а как разность общей и факторной сумм квадратов отклонений, т.е. по формуле: .

Замечание 2. С помощью элементарных преобразований можно получить формулы, гораздо более удобные для практических расчетов и имеющие вид:

,

где: и рассчитываются для каждого уровня фактора , а .

 

Введенные нами величины имеют вполне определенный смысл. Так сумма является характеристикой воздействия фактора на признак X. Действительно, допустим, что фактор оказывает существенное влияние на признак X, тогда группа наблюдаемых значений признака на одном определенном уровне фактора, вообще говоря, будет отличаться от групп наблюдаемых значений признака на других уровнях фактора. Следовательно, будут различаться и групповые средние, причем они будут тем больше рассеяны вокруг общей средней, чем большим окажется воздействие фактора.

Сумма отражает влияние случайных воздействий на результаты наблюдений. Действительно, казалось бы, наблюдения одной группы не должны различаться между собой. Однако на признак X кроме фактора воздействуют и другие (в общем случае многочисленные и малозначащие) случайные факторы, поэтому наблюдения одной и той же группы оказываются различными, а, следовательно, рассеянными вокруг групповой средней.

Подсчитав общую и факторную суммы по приведенным выше формулам, а остаточную сумму – по любой из приведенных формул, можно найти факторную и остаточную дисперсии.

Учитывая, что факторная дисперсия зависит от р составляющих и является смещенной оценкой, формулу для исправленной факторной дисперсии запишем в виде:

.

Остаточная дисперсия зависит от составляющих и также является смещенной оценкой, поэтому формулу для исправленной остаточной дисперсии запишем в виде:

.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал