![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Поверхневі процеси. Рівноважний контакт метал-плазма
У попередньому параграфі показано, що поверхневі процеси впливають на величину параметра нерівноважні, який визначає величину зміщення іонізаційної рівноваги. Тому представляє інтерес детально вивчити іонізаційно-рекомбінаційні процеси на поверхні конденсованої частинки. Розглянемо контакт димова частинка – плазма в наближенні плоскої поверхні. Це означає, що нами приймається припущення про те, що довжина вільного пробігу електронів, іонів і нейтралів багато менше радіусу частинок. Довжина вільного пробігу l у низькотемпературній плазмі визначається концентрацією атомів буферного газу, яка складає при атмосферному тиску 2, 7× 1025 м-3; відповідно 3, 3× 10-7 м. Отже, для частинок розміром більше 1 мкм наближення плоскої поверхні справедливе. Частинка диму, знаходячись в рівновазі з плазмою, має достатньо високу температуру для того, щоб термоелектронна емісія істотно впливала на іонізаційну рівновагу плазми. Це вперше було знайдено у вуглеводневому полум'ї Сагденом і Трашем. Модель рівноважної взаємодії частинок диму з плазмою з урахуванням як випромінювання, так і поглинання електронів була запропонована Ейнбіндером. У всіх випадках рівновага на межі частинка диму – плазма зводиться до балансу потоків термоелектронної емісії і зворотного потоку поглинання електронів. Заряд частинок оксиду кремнію визначається як результат балансу струму електронів і струму іонів
на поверхню частинки радіусу Термоелектронна емісія визначається тільки роботою виходу і температурою. Робота виходу електрона це енергетичний зазор між рівнем Фермі частинки і рівнем вакууму. В даному випадку заряд частинки змінює роботу виходу. Таке можливе тільки при істотній зміні рівня Фермі в матеріалі частинки, що визначається загальною кількістю вільних електронів і, якщо частинка металева, то для цього необхідна густина заряду на рівні З проведеного аналізу виходить, що на поверхні частинок необхідно враховувати також іонізаційно – рекомбінаційні процеси, які виражаються в рекомбінації іонів і іонізації атомів. Таким чином, на поверхні конденсованої частинки враховуватимемо наступні потоки: (а) потік термоелектронної емісії Річардсона – Дешмана:
де
(б) потік поглинання електронів поверхнею частинки:
де
(в) потік поверхневої рекомбінації іонів:
де
(г) потік поверхневої іонізації атомів:
де
Розглянемо умови протікання в плазмі електричного струму. При відсутності магнітного поля можливі тільки два механізми перенесення заряду в плазмі - дифузія і дрейф в електричному полі. Тому густину струму виразимо у вигляді:
де Враховуючи больцмановській розподіл концентрації електронів і іонів, а також той факт, що потенціал
Тут ми врахували, що
З викладеного виходить, що умовою протікання в плазмі струму є просторовий розподіл електрохімічного потенціалу і параметра нерівноважності, оскільки розподілом
В стані термодинамічної рівноваги контакту метал – плазма рівень електрохімічного потенціалу плазми має постійне значення і співпадає з рівнем Фермі металу, тому струм кожної з компонент звертається в нуль, оскільки дифузійна складова струму компенсується дрейфовою складовою. Отже, на межі розділу фаз в стані рівноваги існує баланс струмів:
Енергетична діаграма контакту метал – плазма з урахуванням параметра зміщення іонізаційної рівноваги
Рис.8. Енергетичні діаграми контакту метал – плазма.
іона або атома плазми з поверхнею частинки адсорбцію на поверхні, яка супроводжується перенесенням електрона в тому або іншому напрямі з подальшою десорбцією відповідно атома або іона, оскільки це є необхідною умовою іонізаційної рівноваги. Робота виходу електрона з металу в плазму відрізняється від роботи виходу з металу у вакуум (саме це значення приводиться в довідковій літературі) на величину потенційного бар'єру в плазмі на межі плазма – вакуум. Величина потенційного бар'єру знаходиться з умови амбіполярної дифузії носіїв заряду:
Отже, якщо робота виходу з димової частинки у вакуум є
Сума потоків (9.10) дозволяє обчислити значення поверхневої концентрації електронів:
яке може значно перевищувати рівноважне значення в плазмі. Поверхнева концентрація Як видно з діаграм (рис.8), процес іонізації атомів домішки означає перехід валентного електрона з рівня
де gi, ga – статистична вага іонів і атомів відповідно;
Процес рекомбінації іона на поверхні частинки диму означає перехід електрона з рівня Фермі металу на вільний рівень валентного електрона іона, тобто енергія рекомбінації рівна
де Тепер, використовуючи вирази (9.14) і (9.15) можна визначити через суму потоків (9.11) ступінь іонізації атомів присадки у поверхні частинки диму (відоме як рівняння Саха - Ленгмюра):
З рівнянь (9.13) і (9.16), одержуємо вираження для рівноважної поверхневої іонізації:
Для визначення коефіцієнтів поверхневої іонізації і рекомбінації необхідно знати величини енергії активації десорбції іона _ Тоді рівняння іонізаційної рівноваги (9.17) можна представити в наступному вигляді:
де параметр Розподіл потенціалу приймемо в наближенні Дебая. Тоді параметр нерівноважності дорівнює:
Отже, поверхневе значення параметра нерівноважності дорівнює:
Значення параметра нерівноважності
Для випадку субмікронних частинок, коли _Майже така ситуація реалізується для частинок алюмінію. Робота виходу електрона з алюмінію у вакуум рівна 3.74 eВ. Поправка на величину потенційного бар'єру на межі плазма – вакуум для цезію складає 0.6 eВ, тому робота виходу з алюмінію в плазму рівна Розглянемо випадки гранично малих і гранично великих концентрацій лужної домішки. (а) При малих значеннях концентрації домішки рівняння (9.18) приводиться до вигляду:
Як видно, величина потенційного бар'єру визначається відношенням концентрації електронів в поверхневому шарі до концентрації атомів домішки, що вводиться. При цьому частинка має великий позитивний заряд, оскільки _ (б) При великих значеннях концентрації домішкирівняння (9.18) можна перетворити до наступного вигляду:
Відзначимо, що другий член в правій частині рівняння є виразом Саха - Ленгмюра, який описує рівноважну іонізацію атомів на електронейтральній поверхні металу. Дійсно, якщо слідує допустити, що
Звідси витікає, що при підвищенні концентрації атомів домішки в газовій фазі істотнішу роль в придбанні заряду частинкою грають процеси іонізації атомів і рекомбінації іонів на її поверхні з одночасним зниженням ролі термоелектронної емісії. Результати розрахунку величини потенційного бар'єру на межі розподілу конденсованої фази з роботою виходу електрона з поверхні частинки На графіках суцільна крива описує результати розрахунку, проведені по формулі (9.18), крапками позначена крива, розрахована по формулі (9.22), а пунктирна крива описує наближення малих концентрацій (9.21). Як видно, наближення низьких і високих значень концентрацій атомів достатньо добре співпадають з точним розрахунком у відповідних областях. При концентрації атомів порядка 1016 м-3 величина потенційного бар'єру рівна нулю, що відповідає нейтральному заряду поверхні частинки. На рис.10 приведені залежності середнього значення концентрації електронів, розраховані по моделі (крива 3), в якій не враховуються поверхневі процеси іонізації атомів і рекомбінації
Рис.9. Залежність потенціалу поверхні частинки від концентрації домішки. 1 – загальний випадок; 2 – наближення малих концентрацій; 3 – наближення великих концентрацій.
іонів, і по представленій моделі (крива 2), а на рис.11 аналогічні залежності заряду частинок від концентрації атомів. Для порівняння на малюнку 10 показана залежність Саха (крива 1), що описує рівноважну іонізацію в газовій плазмі. Як видно з графіків, обидві залежності, що описують іонізацію в пиловій плазмі, перетинають криву Саха, що відповідає нейтральному заряду частинок і із збільшенням концентрації атомів домішкиконцентрація електронів в пиловій плазмі стає нижче рівноважного значенні в аналогічній газовій плазмі. Відзначимо, що різні моделі дають різні результати. Урахування іонізаційно-рекомбінаційних процесів на поверхні частинок приводить до того, що частинки мають нейтральний заряд при вищих значеннях концентрації атомів.
рис 10. Залежність середнього значення концентрації електронів від логарифма концентрації атомів цезію. 1 – розрахунок по рівнянню Саха; 2 - з урахуванням іонно - атомних процесів на поверхні частинки; 3 - з урахуванням тільки електронних процесів.
При низьких значеннях концентрації атомів іонізаційно - рекомбінаційні процеси на поверхні частинок приводять до істотнішої іонізації частинок, внаслідок чого підвищується концентрація вільних електронів і позитивний заряд частинок. Припускаючи постійність термоемісійного струму, можна зробити висновок про те, що зростання позитивного заряду частинок пов'язане з перенесенням позитивного заряду на частинку при рекомбінації іонів. Очевидно, що рекомбінація іонів на поверхні частинок зміщує середній заряд частинок в позитивну сторону також і при великих концентраціях атомів.
Рис. 11. Залежність середнього заряду частинок від логарифма концентрації атомів цезію. 1 – з урахуванням іонно - атомних процесів на поверхні частинки; 2 - з урахуванням тільки електронних процесів.
З іншого боку, при високих значеннях концентрації атомів ступінь іонізації домішки дуже низький і тому потік атомів на поверхню частинки істотно перевищить потік іонів. Тоді іонізація атомів на поверхні частинки могла б збільшити перенесення електронів на частинку. Проте, слід враховувати, що для поверхневої іонізації також як і для поверхневої рекомбінації іон і атом повинні мати деяку енергією активації, введення якої може змістити рівновагу на поверхні частинки, що приведе до зміни середнього заряду частинок і концентрації вільних електронів. Таким чином, можна зробити висновок, що механізми придбання заряду поверхнею частинки залежать не тільки від поверхневих властивостей частинок, але і від таких характеристик навколишньої плазми, як її зарядний стан, ступінь іонізації і концентрація легкоіонізуючої домішки.
|