Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Билет № 6. 1. Определение внешнего угла треугольника
1. Определение внешнего угла треугольника. Доказать теорему о внешнем угле треугольника. Сумма внешних углов п - угольника. Определение: Внешним углом треугольника называется угол, смежный с каким-нибудь внутренним углом треугольника. Построение внешнего угла: Чтобы построить внешний угол треугольника, нужно продлить соответственную сторону треугольника. При каждой вершине треугольника можно построить два внешних угла. Они равны между собой, так как являются смежными с одним и тем же углом.
Дано: ∆ АВС. Доказать: Доказательство:
2. Нахождение значений синуса, косинуса, тангенса и котангенса углов в 300, 450, 600. Рассмотрим прямоугольный равнобедренный треугольник с углом при основании, равным 45°. Пусть катеты его равны a. Тогда по теореме Пифагора его гипотенуза будет равна Поэтому Рассмотрим равносторонний треугольник ABC со стороной, равной a. Проведем в нем медиану BD. Получим треугольник ABD – прямоугольный с острым углом при вершине B и стороной По теореме Пифагора Значит:
|