Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Определение вписанного четырехугольника. Доказательство свойства углов вписанного четырехугольника.
Так как центр описанной около четырехугольника окружности равноудален от его вершин, то он принадлежит серединным перпендикулярaм к его сторонам и диагоналям. Обратно, если серединные перпендикуляры к трем сторонам четырехугольника пересекаются в одной точке, то эта точка будет равноудалена от всех его вершин и поэтому будет центром описанной около него окружности. Итак, для того, чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы серединные перпендикуляры к трем его сторонам пересекались в одной точке. Другой критерий вписанного четырехугольника связан с его углами. Теорема. Для того, чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы сумма его противоположных углов была равна 180 ° (т. е. суммы его противоположных углов были равны). Необходимость этого условия очевидна: сумма углов A и C вписанного четырехугольника ABCD измеряется полусуммой дуг BCD и BAD, составляющих полную окружность, и потому равна 180 °. Доказательство: По теореме о градусной мере вписанного угла в окружности Теорема (обратная). Если сумма противоположных углов четырехугольника равна 180 °, то около него можно описать окружность. Достаточность. Пусть ∠ A + ∠ C = 180◦. Тогда эти углы не могут быть оба острыми или оба тупыми. Для определенности будем считать, что ∠ A > 90◦. Опишем около треугольника ABD окружность и докажем, что точка C ей принадлежит. Для этого необходимо опровергнуть два возможных предположения:
|