Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение. Ищем точки х из области определения функции, в которых или не существует.






Ищем точки х из области определения функции, в которых или не существует.

Вторая производная равна нулю в точках . Эти точки являются искомыми, так как область определения и область непрерывности данной кривой есть вся ось абсцисс. Других точек х, которые могли бы быть абсциссами точек перегиба, нет, так как существует всюду.

Исследуем найденные точки, определяя знак слева и справа от каждой из них. Результаты исследования запишем в таблицу, подобную той, которая составляется при отыскании точек экстремума (табл. 3).

 

Таблица 3

x   (0, 1)  
   
выпукла нет перегиба выпукла точка перегиба вогнута

 

Выполним построение (рис. 6).

 

Рис. 6

7.5. Асимптоты

При исследовании функции часто приходится устанавливать вид ее графика (а значит, и характер функции) при неограниченном удалении точки графика от начала координат (при стремлении переменной точки в бесконечность). При этом важным случаем является тот, когда график функции при удалении его переменной точки в бесконечность неограниченно приближается к некоторой прямой.

Если , то прямая является асимптотой графика (при ). Эта асимптота параллельна оси Ox и называется горизонтальной асимптотой (рис. 7). Аналогично, прямая является асимптотой графика y = f (x) (при ), если .

 

 

Рассмотрим асимптоты, параллельные оси Oy.

Прямая x = x 0 называется вертикальной асимптотой, если хотя бы один из пределов , , является бесконечным (рис. 8).

 

Рис. 8

Следовательно, для отыскания вертикальных асимптот нужно найти точки разрыва функции второго рода.

Пример 7.9. Найти вертикальные асимптоты для функции .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал