Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Алгоритм нахождения решения по методу Гаусса
1) Полагая, что в расширенной матрице системы коэффициент (если это не так, то следует на первое место поставить строку с отличным от нуля коэффициентом при ), преобразуем матрицу следующим образом: первую строку оставляем без изменения, а из всех остальных строк исключаем неизвестную с помощью эквивалентных преобразований. 2) В полученной матрице, считая, что (что всегда можно получить, переставив строки), оставляем без изменений первые две строки, а из остальных строк расширенной матрицы, используя вторую строку, с помощью элементарных преобразований исключаем неизвестную . 3) Во вновь полученной матрице, при условии оставляем без изменений первые три строки, а из всех остальных с помощью третьей строки элементарными преобразованиями исключаем неизвестную . Этот процесс продолжается до тех пор, пока не реализуется один из трех возможных случаев: 1) если в результате приходим к ступенчатой матрице соответствующей системе, одно из уравнений которой имеет нулевые коэффициенты при всех неизвестных и отличный от нуля свободный член, то исходная система несовместна; 2) если в результате преобразований получаем систему с матрицей коэффициентов треугольного вида, то система совместна и является определенной; 3) если получается система с трапецеидальной матрицей коэффициентов и при этом не выполняется условие пункта 1), то система совместна и неопределена. Если матрицу размера можно разделить вертикальной чертой на две матрицы: стоящую слева треугольную матрицу размера и стоящую справа прямоугольную матрицу, то матрицу назовем трапециевидной или трапецеидальной. Матрица – трапециевидная матрица.
|