![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Назначение
Дискриминантный анализ представляет собой альтернативу множественного регрессионного анализа для случая, когда зависимая переменная представляет собой не количественную (номинативную) переменную. При этом дискриминантный анализ решает, по сути, те же задачи, что и множественный регрессионный анализ (МРА): предсказание значений «зависимой» переменной, в данном случае — категорий номинативного признака; определение того, какие «независимые» переменные лучше всего подходят для такого предсказания. Структуры исходных данных для дискриминантного и множественного регрессионного анализа практически идентичны:
Строки этой таблицы соответствуют объектам (испытуемым), а столбцы — переменным. Переменные х1..., хР представлены в количественной шкале. Различие исходных данных для дискриминантного и множественного регрессионного методов заключается лишь в том, что представляет собой «зависимая» переменная Y: для МРА она является количественной, а для дискриминантного анализа — номинативной (классифицирующей) переменной. В то же время дискриминантный анализ можно определить и как метод классификации, так как «зависимая» переменная — номинативная, то есть она классифицирует испытуемых на группы, соответствующие разным ее градациям. В этом смысле исходными данными для дискриминантного анализа является группа N объектов (испытуемых), разделенная на G классов так, что каждый объект отнесен к одному и только одному классу (градации номинативной переменной). Допускается при этом, что некоторые объекты не отнесены к какому-либо из этих классов (являются «неизвестными»). Для каждого из объектов имеются данные по Р количественным признакам, одним и тем же для этих объектов. Эти количественные признаки называются дискриминантными переменными. Задачами дискриминантного анализа являются: определение решающих правил, позволяющих по значениям дискриминантных переменных отнести каждый объект (в том числе и «неизвестный») к одному из известных классов; определение «веса» каждой дискриминантной переменной для разделения объектов на классы. ПРИМЕР В качестве объектов могут выступать студенты, сгруппированные по успешности обучения, а в качестве дискриминантных переменных — результаты их вступительных испытаний, социально-демографические характеристики и пр. При помощи дискриминантного анализа мы можем выделить переменные, наиболее важные для предсказания успешности обучения. Кроме того, по этим показателям мы можем предсказать успешность обучения абитуриентов. Испытуемыми могут быть клиенты психотерапевта, сгруппированные по эффекту оказанной помощи. Переменными — симптомы, различные социальные и психологические показатели, а также характеристики видов помощи (длительность и характер терапии и пр.). При помощи дискриминантного анализа исследователь может определить переменные, наиболее существенные для эффекта психотерапии, а также предсказать результативность терапии для данного клиента при использовании данного вида помощи.
Таким образом, дискриминантный анализ позволяет решить две группы проблем: 1. Интерпретировать различия между классами, то есть ответить на вопросы: насколько хорошо можно отличить один класс от другого, используя данный набор переменных; какие из этих переменных наиболее существенны для различения классов. Сходную задачу решает дисперсионный анализ. 2. Классифицировать объекты, то есть отнести каждый объект к одному из классов, исходя только из значений дискриминантных переменных. Задача классификации связана с получением по данным об «известных» объектах дискриминантных функций «решающих правил», позволяющих по значениям дискриминантных переменных отнести с известной вероятностью каждый объект к одному из классов.
В решении задачи классификации дискриминантный анализ является не заменимым другими методами. Часто дискриминантный анализ называют еще «классификацией с обучением» или «распознаванием образов». В первом случае предполагают, что мы «учимся» классифицировать «неизвестные» объекты по дискриминантным переменным, используя данные об «известных» объектах. Во втором случае под «образом» объекта подразумевается совокупность измеренных для него значений дискриминантных переменных. И дискриминантный анализ позволяет в этом смысле распознать образ «нового» объекта путем отнесения его к известному классу объектов. Дискриминантный анализ имеет общие черты с многомерным дисперсионным анализом (MANOVA). По сути, дискриминантные переменные можно рассматривать как многомерную зависимую переменную, а классифицирующую переменную — как фактор. Этот подход применяется для определения достоверности различения классов по совокупности всех переменных (по Сравнивая дискриминантный и множественный регрессионный анализ, можно отметить их сходство в отношении решаемой задачи — предсказания. Однако дискриминантный анализ, являясь более сложным методом, имеет свои преимущества. В качестве «зависимой» переменной в дискриминантном анализе выступает классификация, что делает метод более универсальным: любое измерение можно свести к шкале наименований и избежать требования нормальности распределения «зависимой» переменной. Прогностическая эффективность дискриминантого анализа обычно выше, чем МРА, так как для предсказания используется не одна функция, как в МРА, а, как правило, несколько. Наконец, дискриминантный анализ позволяет провести более глубокое исследование различий между градациями «зависимой» переменной и влияния на нее «независимых» переменных.
|