Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Ранг матрицы. Ранг данной матрицы есть такое число , что по крайней мере один определитель - го порядка, получаемый из этой матрицы при удалении некоторых строк и/или
Ранг данной матрицы есть такое число , что по крайней мере один определитель - го порядка, получаемый из этой матрицы при удалении некоторых строк и/или столбцов, отличен от нуля, а все определители - го порядка равны нулю. Ранг матрицы равен наибольшему числу ее линейно независимых строк (или столбцов). Для квадратной матрицы порядка ее ранг удовлетворяет соотношению . Эта матрица является невырожденной в том и только в том случае, если ее ранг , т. е. . Если же , то матрица является вырожденной. Ранг суммы двух матриц не больше суммы их рангов: .
Пример. Найти ранг матрицы . ◄ Ранг этой квадратной матрицы порядка удовлетворяет соотношению . Единственный определитель 3-го порядка, получаемый из этой матрицы . Ранг данной матрицы , т. к. по крайней мере один определитель 2-го порядка, получаемый из этой матрицы при удалении 3-й строки и 3-го столбца, . ►
Пример. Найти ранг матрицы . ◄ Ранг этой матрицы , т. к. из данной матрицы можно получить определители порядка не выше 2-го. Легко убедиться, что все три определителя 2-го порядка, которые можно получить из этой матрицы удалением поочередно его столбцов, равны нулю. Отсюда следует, что ранг данной матрицы (каждый элемент матриц представляет собой определитель 1-го порядка). Уменьшение ранга этой матрицы по отношению к максимально возможному обусловлено тем, что у нее строки и столбцы линейно зависимы (второй и третий столбец получаются из соответствующих элементов первого их умножением на 2 и 3, соответственно; вторая строка получается из первой, умножением ее элементов на 3). ► В общем случае для вычисления ранга матрицы ее сначала приводят к более простому виду с помощью так называемых элементарных преобразований, к которым относятся: 1) перестановка строк матрицы; 2) умножение какой-либо строки на одно и то же отличное от нуля число; 3) прибавление к элементам строки соответствующих элементов другой строки, предварительно умноженных на некоторое число. Можно показать, что элементарные преобразования не меняют ранга матрицы. Если с помощью элементарных преобразований получить нули ниже главной диагонали матрицы, то ранг исходной матрицы будет равен числу ненулевых строк преобразованной матрицы. Пример. С помощью элементарных преобразований вычислить ранг матрицы . ◄ Умножим первую строку матрицы на –2 и прибавим ко второй строке: ~ ~. Теперь умножим первую строку на –3 и сложим ее с третьей строкой, а затем вычтем из последней строки первую. Имеем ~ ~. Умножая вторую строку получившейся матрицы на –2 и складывая ее с третьей строкой, а затем, складывая вторую строку с последней, получим матрицу ~ . Преобразованная матрица имеет две ненулевые строки, следовательно, ранг матрицы А равен двум: . ►
|