Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Обратная матрица
Квадратная матрица называется невырожденной, если она имеет (необходимо единственную) обратную матрицу , определяемую условиями . В противном случае матрица – вырожденная. Квадратная матрица =() порядка является невырожденной в том и только в том случае, если ее определитель ; в этом случае обратная матрица есть квадратная матрица того же порядка : , (1.1.1) где – алгебраические дополнения элементов в определителе . Квадратная матрица не вырождена в том и только том случае, если ее строки (столбцы) линейно независимы. Строки (столбцы) матрицы линейно независимы, если ни одна строка (столбец) не могут быть выражены в виде линейной комбинации остальных строк (столбцов). В противном случае строки (столбцы) линейно зависимы. Если матрицы и не вырождены и число , то , , . Пример. Дана матрица . Найти обратную матрицу . ◄ Находим определитель матрицы . Т. к. , делаем вывод, что матрица не вырождена и, следовательно, имеет обратную матрицу. Находим алгебраические дополнения для элементов матрицы: , , , , , , , , . Следовательно, по формуле (1.1.1) . Проводим проверку полученного результата: . Делаем вывод, что результат правильный. ►
|