Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Обратная матрица






Квадратная матрица называется невырожденной, если она имеет (необходимо единственную) обратную матрицу , определяемую условиями

.

В противном случае матрица вырожденная.

Квадратная матрица =() порядка является невырожденной в том и только в том случае, если ее определитель ; в этом случае обратная матрица есть квадратная матрица того же порядка :

, (1.1.1)

где – алгебраические дополнения элементов в определителе .

Квадратная матрица не вырождена в том и только том случае, если ее строки (столбцы) линейно независимы. Строки (столбцы) матрицы линейно независимы, если ни одна строка (столбец) не могут быть выражены в виде линейной комбинации остальных строк (столбцов). В противном случае строки (столбцы) линейно зависимы.

Если матрицы и не вырождены и число , то

, , .

Пример. Дана матрица . Найти обратную матрицу .

◄ Находим определитель матрицы . Т. к. , делаем вывод, что матрица не вырождена и, следовательно, имеет обратную матрицу. Находим алгебраические дополнения для элементов матрицы:

, , ,

, , ,

, , .

Следовательно, по формуле (1.1.1)

.

Проводим проверку полученного результата:

. Делаем вывод, что результат правильный. ►


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал