Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Определение матрицы линейного оператора
Пусть в линейном пространстве над полем задан базис (4.8) и пусть – линейный оператор (читается так: в себя). Построим систему векторов (). (4.9) Каждый из векторов системы (4.9) можно разложить по базису (4.8):
(4.10)
Сокращенно система (4.10) записывается одним равенством: . (4.11) Расположим числа в матрицу А по нашей договоренности: верхний индекс обозначает номер строки, а нижний – номер столбца: Заметим, что столбцы полученной матрицы А являются координатными столбцами образов векторов базиса (4.8) в том же базисе. Обозначим [ ] = . Равенство (4.11) можно переписать и так: , откуда, руководствуясь правилом цепочки, (4.11) записываем в матричном виде: . (4.12) Матрицей линейного оператора в некотором базисе называется матрица А, столбцами которой являются координатные столбцы образов базисных векторов в том же базисе. Это матрица , элементы которой удовлетворяют системе равенств (4.10) или (4.11), а сама матрица удовлетворяет матричному равенству (4.12).
|