Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Неперервність функції
Непере́ рвна фу́ нкція — одне з основних понять математичного аналізу. Неперервні функції трапляються набагато частіше, ніждиференційовні, множина всіх неперервних функцій замкнена відносно арифметичних операцій (за винятком ділення) ікомпозиції та утворює чи не найважливіший клас функцій в аналізі. Проте строге математичне означення неперервної функції, яке належить Коші, — порівняно нещодавнє, і потребує просунутого рівня математичної абстракції. Інтуїтивне ж означення таке: функція дійсної змінної неперервна, якщо малим змінам аргумента відповідають малі зміни значення функції, що можна записати так: коли Це означає, що графік неперервної функції не має стрибків, тобто може бути накреслений «не відриваючи олівець від паперу». Всі елементарні функції — неперервні на своїй області визначення. Функція дійсної змінної, яка означена в області , неперервна в точці якщо для довільного знайдеться таке (яке залежить від ), що з випливає Функція неперервна в області , якщо неперервна в кожній точці цієї області.
Означення неперервності в точці Функція f називається неперервною в точці якщо: 1. функція f(x) визначена в точці x0. 2. існує границя 3. .
|