Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Анализ инвестиционных проектов. Под инвестиционным проектом понимается любое вложение денег, генерирующее денежные потоки в будущем






Под инвестиционным проектом понимается любое вложение денег, генерирующее денежные потоки в будущем. Примерами инвестиционных проектов могут служить закупка производственного оборудования, вложение денег в банк под процент, приобретение ценных бумаг.

Рассмотрим проект, в который необходимо вложить сумму I0,, и он генерирует через n временных периодов (например, лет) прибыль С. Допустим, у инвестора имеется альтернатива: вложить деньги в проект или положить их на банковский депозит с процентной ставкой r. Тогда, чтобы получить ту же сумму, которая ожидается в качестве прибыли проекта, через такое же время, в банк следует положить

. (9.3)

Эта величина называется текущей (приведенной) ценностью проекта и показывает, каким должно быть альтернативное вложение средств, чтобы получить через n временных периодов ту же сумму, которую дает проект.

Процентная ставка r, используемая при дисконтировании денежных потоков проекта, называется нормой дисконтирования. В качестве этой величины можно брать процентную ставку банка только в том случае, когда риск, связанный с проектом, и риск, связанный с банковским депозитом, одинаков. Обычно это не так, и в качестве нормы дисконтирования берут внутреннюю норму прибыли альтернативных проектов с таким же финансовым риском, как и у данного проекта.

Чистая текущая ценность проекта рассчитывается по формуле

и показывает, на сколько денежных единиц данный проект требует меньше начальных инвестиций, чем альтернативные вложения, при условии, что в конце рассматриваемого периода они генерируют одинаковую прибыль. Если чистая текущая ценность положительна, то деньги выгоднее инвестировать в проект, а если отрицательна – то выгоднее принять альтернативные предложения (например, положить деньги в банк).

Пример 9.3. Проект, требующий 700 ед. начальных инвестиций, приносит через два года денежный поток 1000 ед. В качестве альтернативы этому проекту рассматривается вложение денег в банк, годовая процентная ставка которого равна 12%. Требуется выбрать наилучший вариант вложения средств.

Решение. По условию I0 =700; C =1000; n =2; r =0, 12. Найдем текущую ценность проекта по формуле (9.3):

.

Таким образом, чтобы получить сумму 1000 ед через два года в банке, следует положить на депозит 797, 19 ден.ед.

Чистая текущая ценность проекта показывает, что в банк нужно вложить на 97, 19 ден.ед. больше, чем в проект, для получения той же суммы в будущем. Поэтому проект является более привлекательным для инвестора вложением средств.

Такая норма дисконтирования денежных потоков проекта, при которой чистая текущая ценность проекта равна нулю (NPV =0), называется внутренней нормой прибыли проекта (IRR=internal rate of return). Таким образом, IRR показывает процентную ставку некоторого гипотетического банка, который дает такую же доходность, как и данный проект. Для проекта, который дает один денежный поток, эта величина определяется из условия

. (9.5)

Если найденная внутренняя норма прибыли больше, чем норма дисконтирования (т.е. прибыльность альтернативных проектов), то рассматриваемый проект является выгодным для инвестора. В противном случае лучше вкладывать деньги в альтернативные проекты.

Пример 9.4. Для проекта предыдущего примера (I0 =700; C =1000; n =2) найдем внутреннюю норму прибыли. Запишем соотношение (9.5):

Þ IRR = 19, 52%.

Таким образом, рассматриваемый проект по прибыльности эквивалентен банковским депозитам с годовой процентной ставкой 19, 52%.

Рассмотрим теперь инвестиционные проекты, которые генерируют несколько денежных потоков по годам. Обозначим Ck – денежный поток, который генерирует проект в k –ом периоде. Начальные инвестиции в проект (в нулевом периоде) обозначаются I0. Рассматривается n временных периодов (горизонт оценивания проекта). Тогда денежные потоки проекта можно представить в виде таблицы 9.1 (В этой таблице сумма вложения средств должна быть представлена отрицательным значением, а сумма поступления средств – положительным).

Таблица 9.1. Денежные потоки проекта

Номер временного периода 0 1 2 k n
Денежный поток -I0 C1 C2 Ck Cn

Очевидно, чтобы получить в банке с процентной ставкой r в конце k - го периода сумму Ck, нужно положить на депозит в нулевом периоде сумму . Чтобы иметь в банке денежные потоки, аналогичные потокам проекта, нужно положить в банк сумму

. (9.6)

Формула (9.6) дает текущую ценность проекта при условии, что проект генерирует несколько денежных потоков. При расчете этой величины часто к последней ожидаемой прибыли проекта Cn прибавляют рыночную стоимость проекта в конце горизонта оценивания.

Чистая текущая ценность проекта, дающего несколько денежных потоков по годам, также рассчитывается по формуле (9.4). Внутренняя норма прибыли такого проекта находится из уравнения:

Û Û (9.7)

Пример 9.5. Последовательность денежных потоков проекта представлена таблицей 9.2. Известно, что внутренняя норма прибыли альтернативных проектов с таким же финансовым риском, как и у данного проекта, равна 17%. Определить чистую текущую ценность и внутреннюю норму прибыли проекта.

Таблица 9.2. Денежные потоки проекта из примера 9.5.

Номер года            
Денежный поток -1000 -200        

Поскольку в качестве нормы дисконтирования принимается внутренняя норма прибыли альтернативных проектов, имеем r=0, 17. Рассчитаем текущую ценность проекта по формуле (9.6):

.

Чистая текущая ценность проекта:

.

Это означает, что данный проект требует начальных инвестиций на 24, 45 ден. единиц меньше, чем альтернативные проекты, генерирующие такие же денежные потоки в будущем, как и данный проект. Поскольку чистая текущая ценность проекта положительна, он является привлекательным для инвесторов.

Внутренняя норма прибыли находится из уравнения (9.7):

.

Решив его, находим IRR=17, 72%. Поскольку внутренняя норма прибыли данного проекта выше, чем у альтернативных проектов, он является выгодным.

В условиях инфляции используемая в расчетах норма дисконтирования должна быть скорректирована. Как известно из экономической теории,

,

где - номинальная процентная ставка (без учета инфляции);

i - уровень инфляции;

r – реальная процентная ставка (с учетом инфляции).

Пример 9.6. Пусть в предыдущем примере внутренняя норма прибыли альтернативных проектов рана 17%, а годовой уровень инфляции 10%. Тогда в расчетах следует использовать норму дисконтирования, равную

или

Чистая текущая ценность проекта составит:

Таким образом, в условиях инфляции данный проект становится непривлекательным для инвестора (отрицательное значение NPV).

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал