![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Нормальное распределение. При большом числе данных соответственное сужение интервалов в распределении влечет за собой постепенное приближение гистограммы к гладкой кривой
При большом числе данных соответственное сужение интервалов в распределении влечет за собой постепенное приближение гистограммы к гладкой кривой. Если же число данных будет беспредельно большое, то гистограмма превратится в безукоризненную кривую. В этом случае кривая может рассматриваться в качестве распределения генеральной совокупности (рис. 1.2). Если кривая распределения имеет тенденцию в центре обнаруживать один пик, причем симметрично справа и слева от среднего арифметического она принимает форму колокола, то такую кривую называют нормальным распределением, или распределением Гаусса. Закон, или функцию нормального распределения выражают следующей формулой:
где m - среднее арифметическое распределения; s - среднее квадратическое отклонение. Величины m и s называют параметрами распределения. Для удобства вычисления функции распределения y = f (x) случайные величины нормируют по формуле:
Нормальное распределение с параметрами m = 0 и s =1 называется нормированным нормальным распределением (рис.1.3.). Функция нормального нормированного распределения примет вид:
При анализе качества продукции количество замеров не всегда бывает достаточным для определения законов распределения. Но если заранее известен закон распределения, то для определения важнейших числовых характеристик распределения нужно небольшое количество замеров. В том случае, когда закон распределения случайной величины близок к нормальному, для обработки результатов опытов необходимо определение двух статистических оценок параметров распределения:
|