Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Содержательный компонент теоретического материала






Часть первая. Обыкновенные дифференциальные уравнения.

1. Примеры математических моделей в экономике, описываемых дифференциальными уравнениями. Обыкновенные дифференциальные уравнения первого порядка. Общие понятия для обыкновенного дифференциального уравнения первого порядка (решение уравнения, интегральная кривая, задача Коши для уравнения в нормальной форме). Уравнение первого порядка в дифференциалах и методы его решения (уравнение с разделяющимися переменными, однородное уравнение, уравнение в полных дифференциалах). Линейное уравнение первого порядка. Метод вариации постоянной. Уравнение Бернулли.

2. Комплексные числа. Комплексные числа. Арифметические действия над комплексными числами. Модуль и аргумент числа. Тригонометрическая и экспоненциальная записи комплексного числа. Решение уравнений в комплексных числах.

3. Системы линейных обыкновенных дифференциальных уравнений в нормальной форме. Общие понятия и свойства (матрица системы, решение системы, задание начальных значений). Линейная однородная система (принцип суперпозиции и фундаментальная матрица решений, общее решение). Структура общего решения линейной неоднородной системы. Вариация постоянных.

4. Обыкновенные дифференциальные уравнения второго порядка. Общие понятия (решение уравнения, начальные значения для уравнения в нормальной форме). Методы понижения порядка дифференциальных уравнений. Понятие о дифференциальных уравнениях высших порядков.

5. Часть вторая. Разностные (рекуррентные) уравнения.

6. Примеры математических моделей в экономике, описываемых разностными уравнениями.

7. Разностные (рекуррентные) уравнения первого порядка. Общие понятия для рекуррентного уравнения первого порядка в нормальной форме (решение уравнения, начальные условия, задача Коши, решение рекуррентного уравнения подстановкой). Линейное уравнение первого порядка (арифметическая и геометрическая прогрессии, частичные суммы и произведения, метод вариации постоянной).

8. Разностные (рекуррентные) уравнения второго порядка. Общие понятия (решение уравнения, начальные значения для уравнения в нормальной форме). Решение уравнения подстановкой.

9. Линейные разностные (рекуррентные) уравнения. Принцип суперпозиции и алгоритм построения общего решения линейного однородного уравнения с постоянными коэффициентами. Структура общего решения линейного неоднородного уравнения. Методы нахождения частного решения линейного неоднородного уравнения. Уравнения с постоянными коэффициентами.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал