Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Модельные задачи и методы исследования устойчивости упругих систем






1. Метод Эйлера. Рассмотрим простую модельную задачу, которая поможет выяснить все особенности потери устойчивости. Пусть абсолютно жёсткий стержень (стойка) шарнирно опёрт на нижнем конце и закреплён с помощью упругой горизонтальной пружины на верхнем (рис. 9.10, а). Эта пружина отражает упругие свойства системы при поперечном отклонении. Реакцию пружины представим соотношением:

(9.3)

где - горизонтальное перемещение верхнего конца стойки. Если перемещение мало, то нелинейными членами можно пренебречь и принять В противном случае задача принимает геометрически нелинейный характер.

Нагрузим стойку вертикальной силой . Если подействовать на жёсткий стержень поперечной малой возмущающей силой , то он отклонится на некоторый малый угол . Теперь снимем эту силу статически. Если стойка вернётся при заданном значении силы в исходное состояние, то она устойчива в смысле Эйлера, если не вернётся, то неустойчива. Пусть имеет место второй случай. Составим уравнение равновесия стойки:

(9.4)

где - реакция упругой пружины.

Из (9.4) следует уравнение

откуда либо (устойчивость), либо (неустойчивость). Пусть . Тогда в нуль обратится круглая скобка, что позволяет найти критическую силу

(9.5)

Полученное значение силы , при котором система впервые не возвратилась к исходному состоянию, называется бифуркационной нагрузкой Эйлера. При этом значении силы происходит нарушение единственности решения задачи , т.е. бифуркация или ветвление решения. Вопрос о том, как будет вести себя стойка при остаётся открытым.

2. Метод Лагранжа. В основу этого метода положено динамическое определение устойчивости состояния равновесия Лагранжа. Для отклонённого состояния стойки, пользуясь принципом Даламбера, имеем (рис. 9.10, б):

(9.6)

где - упругая реактивная сила, - сила инерции, - прогиб, - ускорение, – масса груза на конце стойки.

а) б)

Рис. 9.10

 

Из (9.6) находим уравнение колебаний системы с сосредоточенной массой :

(9.7)

Полагая , получим характеристическое уравнение:

(9.8)

где

(9.9)

Если , то ,

(9.10)

где - круговая частота колебаний, - начальная фаза, – амплитуда колебаний. Движение носит периодический характер и потому устойчиво. Если учесть внешнее и внутреннее сопротивление системы, то решение будет иметь вид

,

где - параметр, определяющий сопротивление движений. Колебания с ростом времени затухнут, и система вернётся в своё исходное состояние. Следовательно, исходное состояние равновесия устойчиво.

Если , то – действительное число. Решение принимает вид:

(9.11)

и носит апериодический, т.е. неустойчивый характер. При имеем . При происходит переход от устойчивого периодического движения стойки к неустойчивому апериодическому. Это происходит при критической силе

Таким образом, динамический метод Лагранжа приводит к тому же результату, что и метод Эйлера.

 

3. Метод Кармана (начальных несовершенств). Т.Карман первым рассмотрел процесс продольного изгиба стойки с начальными несовершенствами как задачу устойчивости и трактовал предельную нагрузку не как исчерпания несущей способности системы, а как предел устойчивости. Однако такая точка зрения долгое время (вплоть до наших дней) не находила поддержки. Применим метод Кармана к стойке на рис. 9.11а.

а) б) в)

Рис. 9.11

 

Стойка имеет отклонение от вертикали на некоторый угол и сжимается силой . При стойка отклонится от вертикали на угол . Уравнение равновесия в некоторый момент процесса продольного нагружения стойки имеет вид

(9.12)

где Из (9.12) следует:

, (9.13)

Дифференцируя по или по соответственно, находим:

(9.14)

откуда при следует Согласно изложенной концепции значение силы является пределом устойчивости и совпадает с эйлеровой силой.

 

4. Энергетический метод С.П. Тимошенко. При отклонении системы на угол от положения равновесия (рис. 9.11, в), верхний конец стержня опускается на величину . Сила совершает работу . Перемещение

где прогиб

Работа силы на перемещение принимает вид

Упругая внутренняя реактивная сила совершает работу, называемую потенциальной энергией деформации:

Величина

носит название полной потенциальной энергии системы, связанной с потерей устойчивости. Если (), то энергии достаточно для возвращения стержня в исходное состояние, т.е. его состояние равновесия устойчиво. Если (), то энергии деформации недостаточно для возвращения стержня в исходное состояние равновесия, т.е. он находится в неустойчивом состоянии равновесия. Граничное значение энергии является критерием для определения критической силы . Таким образом, энергетический метод приводит к критической нагрузке, равной нагрузке Эйлера для данной модели.

5. Метод Койтера исследования нелинейного послебифуркационного процесса выпучивания (нагружения). Пусть реакция в упругой пружине (рис. 9.13):

(9.15)

т.е. зависимость носит нелинейный характер.

а) б)

Рис. 9.13

 

Тогда уравнение равновесия (9.3) примет вид

(9.16)

 

откуда либо , либо , и тогда равно нулю выражение в квадратной скобке. Второе условие приводит к соотношению, которое позволяет установить зависимость между силой и перемещением в процессе нагружения элемента:

(9.17)

Если , то имеем кривые зависимости с симметричной бифуркацией (рис. 9.13, а). Предположим, что с развитием выпучивания и увеличением перемещения в пружине при возникают пластические деформации. Тогда вместо (9.3) при имеем:

откуда

(9.18)

и с ростом нагрузка будет падать (рис. 9.13, а).

В реальных системах переход к пластической стадии деформирования осуществляется на графике от плавно с экстремальной предельной точкой.

Если , то согласно (9.17) имеем симметричную неустойчивую бифуркацию, характерную для сжатых неупругих стержней и пластины (рис. 9.13, б).

Пусть теперь

().

Тогда, согласно (9.12), имеем:

откуда при получаем:

(9.19)

При > 0, < 0, < 0 зависимость (9.19) имеет несимметричный вид (рис. 9.14, а). Прогибы после бифуркации растут при падающей нагрузке. Такая точка бифуркации называется неустойчивой. Она характерна для упругих оболочек.

Если > 0, > 0, < 0, то бифуркация будет также несимметричной (рис. 9.14, б).

а) б)

Рис. 9.14


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.015 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал