Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Линейная комбинация векторов
Линейной комбинацией векторов называют вектор где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.
Система линейно зависима что Система линейно независима
Для того чтобы векторы (r > 1) были линейно зависимы, необходимо и достаточно, чтобы хотя бы один из этих векторов являлся линейной комбинацией остальных.
Линейное пространство V называется n -мерным (имеет размерность n), если в нем: 1) существует n линейно независимых векторов; 2) любая система n + 1 векторов линейно зависима. Обозначения: n = dim V; . Базис пространства . Координаты вектора Базис - любая упорядоченная система из n линейно независимых векторов пространства . Обозначение: Для каждого вектора существуют числа такие что Числа называются координатами вектора в базисе () (определяются однозначно), X = (x) - координатный столбец вектора в этом базисе. Употребляется запись: Справедливы формулы:
|