Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Example 2
(4.31) If impulse area is equal to s, then we consider that we have S-scale impulse of -function which is equal to . The system reaction to -function is called impulse transient characteristic (impulse response), or weighting function . Together with transient characteristic it is the most important characteristic of system dynamic properties. If we have a time shift , then -function will have the following form: (4.32) Signals in the form of impulse functions may be considered as derivatives of unit step function Taking into account an order of a derivative we obtain: - 1st order impulse function or -function; - 2nd order impulse function, … To prove this statement we may represent the unit step function as the limit of a certain continuous function: (4.33) Within the interval we may obtain: (4.34) The derivative of the unit step function: (4.35) Thus, we obtain: - -function = 0 at - -function = at ; - if then . This interpretation is convenient, since it allows to obtain analytical expressions for 2nd, 3rd, …, k-th order impulse functions. Their expressions and graphic forms may be obtained as the limits of derivatives of -functions at according to Eq.(5.8). You may construct -function block using the following blocks from Matlab6.5: - Step; - Derivative (du/dt). The connection between transient characteristic and weighting function may be also established using two step functions.
|