Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Методы, основанные на монотонности функций
При решении уравнений типа в ряде случаев весьма эффективным является метод, который использует монотонность функций и . Если функция непрерывна и возрастает (убывает) на отрезке , а функция непрерывна и убывает (возрастает) на этом же отрезке, то уравнение на отрезке может иметь не более одного корня. Напомним, что функция называется возрастающей (или убывающей) на отрезке , если для любых , , удовлетворяющих неравенствам , выполняется неравенство (соответственно, ). Если функция является на отрезке возрастающей или убывающей, то она называется монотонной на этом отрезке. В этой связи при решении уравнения необходимо иследовать функции и на монотонность, и если одна из этих функций на отрезке убывает, а другая функция – возрастает, то необходимо или попытаться подбором найти единственный корень уравнения, или показать, что такого корня не существует. Если, например, функция возрастает, а убывает для и при этом , то корней уравнения среди нет. Особенно такой метод эффективен в том случае, когда обе части уравнения представляют собой весьма «неудобные» для совместного исследования функции. Кроме того, если функция является монотонной на отрезке и уравнение (где с – некоторая константа) имеет на этом отрезке корень, то этот корень единственный.
|