Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Розкриття невизначеностей. Правило Лопіталя.
Теорема 1 (правило Лопіталя). Нехай функції і визначені в проміжку і . Нехай, крім того, в проміжку існують скінченні похідні і , причому . Тоді, якщо існує границя , то існує й границя , причому
.
Доведення. Доозначимо в точці функції і , поклавши . Тоді на відрізку функції і задовольняють умовам теореми Коші. Отже,
,
де . Якщо , то зрозуміло, що й . Враховуючи, що і те, що існує границя , робимо висновок
.
Зауваження. Якщо похідні і задовольняють умовам, котрі накладаються в наведеній теоремі на функції і , то правило Лопіталя можна застосувати повторно, тобто
.
Теорема 1 справджується й тоді, коли . Нехай функції і визначені в проміжку , , і в проміжку існують скінчені похідні та , де . Тоді, якщо існує границя , то існує й границя , причому
.
Для доведення цього твердження достатньо покласти і застосувати теорему 1. Теорема 2 (правило Лопіталя). Нехай функції і визначені в проміжку , і в проміжку існують скінчені похідні та , причому . Тоді, якщо існує границя , то існує й границя , причому
.
Доведення цієї теореми можна прочитати, наприклад, в книзі Г. М. Фихтенгольца “Основы математического анализа”, т. 1. - М.: Наука, 1964. Теорема 2 має місце також, коли . Правило Лопіталя дає можливість розкривати невизначеності типу .
|