Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Асимптоти графіка функції
Пряма називається асимптотою кривої , якщо відстань від точки кривої до прямої при віддаленні точки у нескінченність прямує до нуля. Із наведеного означення випливає, що асимптоти можуть існувати лише у тих кривих, які мають як завгодно віддалені точки, тобто у “нескінчених” кривих. Надалі розрізнятимемо похилі і вертикальні асимптоти. До похилих асимптот належать також і горизонтальні асимптоти. Теорема. Якщо функція визначена на нескінченості і існують границі (1) то пряма є похилою асимптотою кривої при . Аналогічно, якщо існують границі (2) то пряма є похилою асимптотою кривої при . Доведення. Розглянемо випадок . Оскільки за умовою існують границі (1), то . Число дорівнює довжині відрізка від точки прямої до точки графіка функції (рис. 30).
Відстань від точки до прямої рівна , де - кут, який утворює пряма з додатним напрямом вісі (, оскільки мова йде про похилі асимптоти). Отже, = . Тоді . Випадок, коли доводиться аналогічно. Якщо , то пряма є горизонтальною асимптотою графіка функції при . Те ж стосується і випадку . Зауваження. Якщо не існує границя , то не існує і границя . Отже, у цьому випадку графік функції при асимптот не має. Якщо границя існує і рівна , а границя не існує, то у цьому випадку графік функції також асимптот не має. Із означення асимптоти кривої випливає, що пряма є вертикальною асимптотою, якщо принаймні одна з границь або рівна або .
|