Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Доказательство






Как видите, теорема состоит из двух частей. Докажем сначала, что уравнение вида задает прямую на плоскости. Пусть координаты точки Mo(xo, yo) удовлетворяют уравнению, то есть,. Вычтем из левой и правой частей уравнения соответственно левую и правую части равенства, при этом получаем уравнение вида, которое эквивалентно. Уравнение представляет собой необходимое и достаточное условие перпендикулярности двух векторов и. То есть, множество всех точек M(x, y) определяет в прямоугольной системе координат Oxy прямую линию, перпендикулярную направлению вектора. Если бы это было не так, то векторы и не были бы перпендикулярными и равенство не выполнялось бы. Таким образом, уравнение задает прямую линию в прямоугольной декартовой системе координат Oxy на плоскости, следовательно, эквивалентное ему уравнение вида задает эту же прямую. На этом первая часть теоремы доказана. Теперь докажем, что всякая прямая в прямоугольной системе координат Oxy на плоскости определяется уравнением первой степени вида. Пусть в прямоугольной системе координат Oxy на плоскости задана прямая a, проходящая через точку Mo(xo, yo), - нормальный вектор прямой a, и пусть M(x, y) - плавающая точка этой прямой. Тогда векторы и перпендикулярны, следовательно, их скалярное произведение равно нулю, то есть,. Полученное равенство можно переписать в виде. Если принять, то получим уравнение, которое соответствует прямой a. На этом доказательство теоремы завершено.

Уравнение прямой на плоскости. Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом. Общее уравнение прямой при B≠ 0 можно привести к виду

 

где k - угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой, проходящей через две различные точки на плоскости. Если прямая проходит через две точки A(x1, y1) и B(x2, y2), такие что x1 ≠ x2 и y1 ≠ y2, то уравнение прямой можно найти, используя следующую формулу

x - x1 = y - y1
x2 - x1 y2 - y1
     

Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал