Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Билет 10.






10. Проверка нулевой гипотезы о статистической незначимости уравнения регрессии в целом. Как используется F-статистика в регрессионном анализе?

Оценка значимости уравнения регрессии в целом производится с помощью F – критерия Фишера. F-тест состоит в проверке гипотезы H0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического (расчетного) критерия Fр с табличным значением F табл. Таблицы критических значений составлены на основе двухпараметрического распределения неотрицательной случайной величины (F-распределения Фишера) в зависимости от численных значений степеней свободы v1 = m и v2 = n - m - 1, при различных уровнях значимости (5%, 1%, 0, 1%).

С использованием дисперсии на одну степень свободы проводится проверка стат-кой значимости модели в целом. При этом: H0: Dфакт=Dост H1: Dфакт> Dост и для R^2^ H0: R^2=0 H1: R^2> 0

Проверка коэффициента R^2 эквивалентно проверке значимости модели в целом.

Fнабл.= Dфакт/Dост=(ESS/p)/(RSS/n-p-1)=

=(R^2/(1-R^2))*((n-p-1)/p)

 

Если Fнабл< =Fтабл(α, p, n-p-1) H0 не отклоняется и признается статистическая незначимость и уравнения регрессии.

Если наоборот – H0 отклоняется в пользу H1 то есть уравнение регрессии статистически значимо.

Значимость модели в целом означает, что прогноз зависимой переменной с помощью модели оказывается лучше прогноза по ее среднему значению.


 

51. Модель ARMA. Как интерпретируют параметры моделей авторегрессии?

(!!! В КАВЫЧКАХ СЛОЖНЫЕ ИНДЕКСЫ!!!)

 

Модели ARMА имеют две части: авторегрессионную и скользящую среднюю:

yt=α 1*y’t-1’+…+ α ’k’*y’t-k’+ε ’t’ – β 1*ε ’t-1’ – β 2*ε ’t-2’ -…- – β m*ε ’t-m’.

В данной модели в качестве объясняющих переменных рассматриваются значения зависимой переменной с p интервалами сдвига (или p авторегрессионных членов) и скользящие средние порядка q для остатков авторегрессии. Иными словами, модель включает в себя AR(p) и MA(q). \

Вид порождаемого процесса зависит от регрессионной части. Если АRМА процесс имеет эквивалентные представления в виде скользящего среднего с бесконечным порядком, то имеем стационарный процесс.

Оценивание модели имеет 2 этапа:

1) решение модифицированной системы Юла-Уокера, вычисляется коэф. авторегрессионной части;

2) вычисляется ряд разности м\у уровнем исходного ряда и рядом, предсказнным авторегрессионной частью и по полученному ряду оцениваются коэф-ты модели скользящего среднего. Составление нелинейной системы.

 

Система уравнений Юла-Уокера:

r1=a1+a2*r2+…+a’k’*r’k-1’;

r2=a1*r1+a2+…+a’k’*r’k-2’;

………..

r’k’=a1*r’k-1’+a2*r’k-2’+…+a’k’;

где r1, r2, …, r’k’ – известные оценки коэффициентов автокорреляции;

а1, а2, …, а’k’-неизвестные оценки коэффициентов модели.

Простейшая модель авторегрессии - скользящего среднего АРСС(k, m):

y’t’=α 1*y’t-1’+ε ’t’– β 1*ε ’t-1’

y’t’- α 1*y’t-1’= ε ’t’– β 1*ε ’t-1’, │ α │ < 1, │ β │ < 1

 

Значения автокорреляционной функции для ARMA (1, 1) будут иметь вид:

ρ (1)=(1-α β)*(α -β)/(1+β ^2-2α β), τ =1

ρ (τ)=α ρ (τ -1)=α ^(τ -1)*ρ (1), τ > 1


 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал