Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Численные методы приближения функций.






 

Приближением функции называется процедура замены по определенному правилу функции близкой к ней в том или ином смысле функцией из некоторого фиксированного множества. В качестве приближающего множества частот берут подпространство алгебраических или тригонометрических многочленов (полиномов). Более гибкий и мощный аппарат приближения получают, рассматривая обобщенные полиномы

,

где – некоторая система линейно независимых функций, выбираемая с учетом конкретных условий задачи и требований, предъявляемых к функции . В дальнейшем будем считать, что функция – полином такого вида.

Мерой погрешности приближения является, как правило, расстояние между приближаемой и приближающей функциями. Наиболее часто погрешность приближения на интервале оценивается в равномерной

и среднеквадратичной

метриках, где – интервал, на котором строится приближение.

Рассмотрим две постановки задачи приближения.

1. Пусть в отдельных точках интервала заданы значения функции ; требуется восстановить ее значение для других .

Если параметры определяются из условий совпадения значений приближаемой и приближающей функций в точках

,

то такой способ приближения называют интерполяцией, а точки – узлами интерполяции. (Задачей экстраполяции называют задачу вычисления функции в некоторой точке , находящейся вне интервала ).

Предположим, что алгоритм построения приближающей функции не требует выполнения последнего условия, и значения функции вычисляются в произвольных точках, тогда говорят об аппроксимации функции.

2. Пусть функция задана таблично по результатам измерений, т.е. значения функции , вычисленные в точках , , содержат ошибки . Построение приближающего полинома интерполяционным методом с использованием условий совпадения значений приближаемой и приближающей функций в узлах привело бы к повторению имеющихся ошибок.

Практика показала, что полином , минимизирующий погрешность приближения в среднеквадратичной метрике, значительно лучше представляет функцию . Таким образом, аппроксимирующий полином строится из условия

.

Процедура таких построений носит название метода наименьших квадратов.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал