Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Подпространство
Алгебраическое определение: Линейное подпространство или векторное подпространство ― непустое подмножество K линейного пространства L такое, что K само является линейным пространством по отношению к определенным в L действиям сложения и умножения на скаляр. Множество всех подпространств обычно обозначают как Lat (L). Чтобы подмножество было подпространством, необходимо и достаточно, чтобы § ; § для всякого вектора , вектор также принадлежал K, при любом ; § для всяких векторов , вектор также принадлежал K. Последние два утверждения эквивалентны следующему: § для всяких векторов , вектор также принадлежал K для любых . В частности, пространство, состоящее из одного элемента {θ }, является подпространством любого пространства; любое пространство является само себе подпространством. Подпространства, не совпадающие с этими двумя, называют собственными или нетривиальными. [править]Свойства подпространств § Пересечение любого семейства подпространств — снова подпространство; § Сумма конечного семейства подпространств — снова подпространство. Сумма подпространств определяется как множество, содержащее всевозможные суммы элементов Ki: . В функциональном анализе в бесконечномерных пространствах особо выделяют замкнутые подпространства. Векторное пространство
|