Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Конические поверхности






Определение. Конической поверхностью называется множество прямых (образующих), проходящих через некоторую точку (вершину) и пересекающих некоторую линию (направляющую).

 

Коническая ПВП — коническая поверхность с направляющей, являющейся КВП.

 

 

поверхности параллельны оси OZ, а направляющая лежит в плоскости OXY и задается уравнением:

 

F(x, у) =0

 

Если взять произвольную точку M(z, y, z) на цилиндрической поверхности, то ее проекция на плоскость OXY есть точка M11, у1, 0). Так как точки M и М1 лежат на образующей, то х1=х, у1=у. А так как точка М1 лежит на направляющей, то координаты точки М1, а, значит, и точки M, удовлетворяют уравнению F(x, у)=0.

 

Итак, уравнению удовлетворяют координаты любой точки

цилиндрической поверхности. Следовательно, уравнение

 

F(x, у)=0

 

искомое уравнение цилиндрической поверхности.

 

Если в прямоугольной системе координат OXYZ направляющая является кривой второго порядка, задаваемой каноническим уравнением вида F(x, у)=0, а образующие параллельны оси OZ, то цилиндрическими поверхностями второго порядка будут:

 

1) х2+y2=z2 — прямой круговой цилиндр;

 

2) - эллиптический цилиндр;

 

3) - гиперболический цилиндр;

 

4) у2=2рх - параболический цилиндр.

 

3) ( + ) = + (дистрибутивность).

 

Из определения следует, что

 

.

 

Tеорема (необходимое и достаточное условие ортогональности двух векторов). Два ненулевых вектора взаимно перпендикулярны (ортогональны) тогда и только тогда, когда их скалярное произведение равно нулю.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал