Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Полярное уравнение эллипса, гиперболы, параболы






Выведем полярное уравнение для отличного от окружности эллипса, параболы или правой ветви гиперболы. Для этого совместим полюс полярной системы координат с левым фокусом эллипса (правым фокусом гиперболы) или единственным фокусом параболы, а полярную ось направим перпендикулярно директрисе d, соответствующей фокусу. Обозначим через F, р и ε соответственно фокус, фокальный параметр и эксцентриситет кривой. Пусть М — произвольная точка кривой, МF = r — полярный радиус точки М, φ — ее полярный угол. Тогда

- полярное уравнение эллипса, отличного от окружности, параболы, правой ветви гиперболы.

Для левой ветви гиперболы

 

 

- полярное уравнение левой ветви гиперболы.

 

 

Пусть l – прямая. Тогда ее положение в пространстве однозначно определяется заданием ее направляющего вектора =(m, n, р) и точкой М0(х 0, у 0, z 0), через которую прямая проходит. Возьмем произвольную точку М(х, у, z) l. Тогда и, значит,

Переходя к координатам, получим

x - x 0 = tm, y - y 0 = tn, z - z 0 = tp

- параметрические уравнение прямой.

Выражая параметр t, получим

 

 

- каноническое уравнение прямой, проходящей через точку М00 y0, z0) параллельно вектору =(m, m, р).

 

Последнее уравнение равносильно

 

- общее уравнение прямой.

 

Пусть M1{ x 1, у 1, z 1) и М2(х 2, у 2, z 2) – точки прямой. Тогда

- уравнение прямой, проходящей через две заданные точки.

 

Наоборот, пусть задано общее уравнение прямой.

Беря произвольную точку М00, у0, z0) прямой получаем

 

- каноническое уравнение прямой.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал