Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Директрисы эллипса и гиперболы.






Определение. Прямые х= (а /ε), где ε — эксцентриситет эллипса (гиперболы) называются директрисами эллипса (гиперболы).

Теорема. Отношение расстояния от любой точки эллипса (гиперболы) до фокуса к расстоянию до соответствующей директрисы есть величина постоянная, равная эксцентриситету эллипса (гиперболы).

Доказательство, например для эллипса, следует из того, что

MF1=а+ε х, МF2=а—ε х.

 

Заметим, что, так как все точки параболы равноудалены от директрисы и фокуса, то отношение этих расстояний равно 1. Пo этому можно говорить об эксцентриситете параболы и считать его равным 1. Как

 

 

Отметим, что условия параллельности и перпендикулярности прямых l 1 и l 2 равносильны условиям коллинеарности и ортогональности их направляющих векторов и .

Следовательно,

 

 

- необходимое и достаточное условие параллельности двух прямых.

m 1 m 2 + n 1 n 2 + p 1 p 2 = 0

- необходимое и достаточное условие перпендикулярности двух прямых.

Если прямые l 1 и l 2 пересекаются, то величина угла φ между ними равно либо ( ^, ) либо (- ^, ). Следовательно,


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал