![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема о взаимности возможных работ
Рассмотрим два состояния какого-либо сооружения, например балки на двух опорах (рис. 6.10, а). В состоянии i на эту балку действует обобщённая сила Fi, а состоянии j – обобщённая сила Fj. Обобщённые силы Fi и Fj в упомянутых состояниях прикладываются статическим способом. На рис. 6.10, а показаны действительные ( Рис.6.10
Вычислим работу обобщённых сил Fi и Fj от их совместного воздействия. Сначала статическим способом приложим обобщённую силу Fi, которая на перемещении
Зависимости для вычисления действительной и возможной работы внешних обобщённых сил Fi и Fj:
Таким образом, выражение суммарной работы от совместного действия обобщённых сил Fi и Fj в случае, когда первой прикладывается сила Fi, а второй Fj, примет вид:
Рассмотрим обратный порядок приложения обобщённых сил: первой приложим статическим способом обобщённую силу Fj, а затем, после её окончательного формирования, – обобщённую силу Fi (рис. 6.10, в). Суммарная работа внешних обобщённых сил Fi и Fj
Учитывая, что
Значение суммарной работы внешних обобщённых сил Fi и Fj не зависит от последовательности их приложения, т.е.
Приняв во внимание соотношения (6.1) и (6.2) окончательно будем иметь:
Wext, ij = Wext, ji. (6.3) Выражение (6.3) и составляет содержание теоремы о взаимности возможных работ внешних сил: возможная работа i-й обобщённой силы (внешних сил i-го состояния) на перемещениях, вызванных j-й обобщённой силой (внешними силами j-го состояния), равна возможной работе j-й обобщённой силы (внешних сил j-го состояния) на перемещениях, вызванных i-й обобщённой силой (внешними силами i-го состояния). В строительной механике эта теорема носит имя итальянского учёного Энрико Бетти (1823–1892). Без доказательства отметим справедливость теоремы Бетти для внутренних сил Wint, ij = Wint, ji, т.е. возможная работа внутренних сил i-го состояния на деформациях j-го состояния равна возможной работе внутренних сил j-го состояния на деформациях i-го состояния. Из теоремы Бетти, как частный случай, вытекают другие теоремы взаимности строительной механики, широко используемые в расчётах сооружений.
6.2.2. Теорема о взаимности перемещений
По-прежнему рассмотрим состояния i и j одного и того же сооружения (рис. 6.11). В состоянии i на него действует сила Fi = 1, а в состоянии j – сила Fj = 1. Зафиксируем возможные перемещения Для состояний сооружения i и j применим теорему о взаимности возможных работ внешних сил (см. соотношение (6.3)):
Соотношение (6.4) выражает содержание теоремы о взаимности перемещений: перемещение по направлению линии действия i-й единичной обобщённой силы, вызванное j-й единичной обобщённой силой, равно перемещению по направлению линии действия j-й обобщённой силы от i-й единичной обобщённой силы. В строительной механике эта теорема известна как теорема английского физика и механика Джеймса Максвелла (1831–1879). Рис.6.11
Теорема о взаимности перемещений широко применяется в расчётах линейно деформируемых систем, в частности, в расчётах статически неопределимых систем методом сил, при построении линий влияния перемещений в стержневых сооружениях. Выше был рассмотрен случай, когда в состоянии i и j сооружения действуют единичные сосредоточенные силы (рис. 6.11), т.е. силы, имеющие одинаковую природу и одинаковую размерность. На рис. 6.12 рассмотрена ситуация, когда в состоянии i на сооружение действует сосредоточенная сила Fi = 1, а состоянии j – сосредоточенный момент Mj = 1. Здесь же показаны и возможные перемещения
т.е. оба перемещения имеют одинаковую размерность.
Рис.6.12
19Определение перемещений в стержневых системах
наиболее общим методом определения перемещений в стержневых системах является метод Мора (иногда говорят: Максвелла – Мора), в основе которого лежат два основных принципа механики: начало возможных перемещений и закон сохранения энергии. Прежде чем перейти к изложению метода, остановимся на его основных теоретических предпосылках.
|