Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Б) -3 в области 2 непосредственно следует за -4.






ЧИСЛОВЫЕ СИСТЕМЫ, ИХ СВОЙСТВА

1.Натуральные числа N!!!!!!!!!!

0 1 2 3 4 5 6 7 8 9 10

Натуральное число N указывает количество элементов конечного множества. 0-не является натуральным числом.

Целые числа Z Множество целых чисел есть объединение множества натуральных чисел и множества им противоположных им чисел.

!!.!!!!

-2 -1 0 +1 +2 +3

3Дробные числа Q+!!!!!!

01/2 1 3/2 2 3 4 5

Каждое множество всех дробей, которые получаются друг из друга делением или умножением (числителя или знаменателя) на общий множитель есть дробное число.

4.Рациональные числа Q! -2! 1--1/2 0 + 1/2 + 1 +2

Множество рациональных чисел – это объединение множества дробных чисел и чисел, им противоположных.

Действительные числа R

!!!!!!

-2 -V3 -1-1/2 0 +1/2+ 1 +V3 +2

Множество действительных чисел—это множество всех конечных или бесконечных(периодидических или неперио-дических) десятичных дробей.

Можно представить числа на схеме

Действительные числа R

Рациональные ч Q + Q- Иррациональн ч. I

Целые числа Z Дробные числа Q+

Отрицательные Z_ Натуральные N.

Целые числа числа и число 0.

Числовая прямая — это прямая с заданной нулевой точкой и единичным отрезком, так что точки прямой могут быть соотнесены однозначно и обратимо с действительными числами.

Из части числовой прямой, содержащей точку нуль и точку, соответствующую единице. Эта часть называется числовым лучом. Соответствие чисел области и ее подобласти точкам числовой прямой не является однозначно обратимым. Хотя каждому рациональному числу можно сопоставить точку числовой прямой, но не каждой точке отвечает рациональное число.

Отношения порядка

Каждая числовая область упорядочивается с помощью отношений меньше (<) В соответству-ющих числовых областях: а < в тогда и только тогда, когда а < в и а не= в; а не > в.

а > в тогда и только тогда, когда а не< в и а не=в

При изображении действительных чисел на число-вой прямой из двух различных чисел меньшее всегда лежит левее большего.

Свойства отношения «меньше»:

Для произвольных чисел а, в, с соответствующей области справедливо:

· Если а < в и в < с, то а < с.

· Если а < в, то не верно, что в < а.

· Или а < в, или в < а, или а = в.

· Если а < в, то а + с < в + с.

· Если а < в и с > 0, то ас < вс.

· Не верно а < а.

Последующее число:

О1.: Пусть а, в — элементы упорядоченной числовой области. Число в называется непосредственно последующим числом за а внутричисловой области тогда и только тогда, когда а < в и нет в области числа с такого, что а < с < в. Для каждого числа существует однозначно определенное непосредственно последующее число только в областях N и Z. Примеры:

А) 4 в области N непосредственно следует за 3. 4 в области N не является непосредственно следующим за 2, так как имеется число 3 (3 из N), которое лежит между 2 и 4.

б) -3 в области 2 непосредственно следует за -4.

Предшествующее число

О2.: Пусть а, в — элементы упорядоченной числовой области в называется непосредственно предшествующему числу а внутри внутри области тогда и только тогда, когда в < а и нет числа с из этой области, для которого в< с < а.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал