Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Использование интегрирующего множителя
Если линейное дифференциальное уравнение записано в стандартной форме: то интегрирующий множитель определяется формулой: Умножение левой части уравнения на интегрирующий множитель u (x) преобразует ее в производную произведения y (x) u (x). Общее решение диффференциального уравнения выражается в виде: где C − произвольная постоянная
36. Диф уравнения Бернулли Дифференциальное уравнение Бернулли имеет вид . При n = 1 это дифференциальное уравнение становится уравнением с разделяющимися переменными . Одним из методов решения дифференциального уравнения Бернулли является сведение его клинейному неоднородному дифференциальному уравнению первого порядка введением новой переменной . Действительно, при такой замене имеем и дифференциальное уравнение Бернулли примет вид Так дифференциальное уравнение Бернулли приводится к линейному неоднородному дифференциальному уравнению первого порядка. После решения этого уравнения и проведения обратной замены получаем искомое решение.
37. Однородные диф уравнения первого порядка.
|