Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Уравнение прямой на плоскости
Прямую на плоскости можно задавать уравнениями разных видов. Для решения задач следует использовать уравнение, наиболее удобное для данной задачи. Уравнение с угловым коэффициентом: y = kx + b. (3) В этом уравнении угловой коэффициент k – это тангенс угла наклона прямой к оси абсцисс. Угол отсчитывается от положительного направления оси абсцисс против часовой стрелки. Недостаток этого уравнения: им невозможно задать вертикальную прямую x = a. Общее уравнение прямой: Ax + By + C = 0. (4) Этим уравнением можно задать любую прямую. Коэффициенты А, В, С при этом определяются не однозначно, а с точностью до пропорциональности. Уравнение прямой в отрезках: . (5) Здесь знаменатели а и b – это координаты точек пересечения прямой с соответствующими координатными осями. С помощью такого уравнения невозможно задать прямую, проходящую через начало координат или параллельную одной из осей. Уравнение прямой, проходящей через две заданные точки M 1(x 1, y 1) и M 1(x 2, y 2): . (6) В этом уравнении один из знаменателей может оказаться равным 0. Тогда общее уравнение прямой получаем, приравнивая к 0 соответствующий числитель (на другую часть уравнения не обращаем внимания). Уравнение прямой, проходящей через заданную точку M (x 0, y 0) с угловым коэффициентом k: y – y 0 = k (x – x 0). (7) Каноническое уравнение прямой: . (8) Здесь M (x 0, y 0) – точка, через которую проходит прямая, а (m, n) – направляющий вектор, задающий направление прямой. Любой из приведенных видов уравнений легко преобразовать в любой другой.
|