Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод последовательных приближений (метод простой итерации)






Заменим исходное уравнение f (x) =0 равносильным уравнением x=j (x). Тогда формула для вычисления последовательных приближений будет выглядеть так:

xn+1=j (xn)(n=0, 1, 2, …); где x0 начальное приближение, x0 [ a, b ].

Приведем достаточное условие сходимости итерационного процесса:

Теорема. Пусть функция j (x) определена и дифференцируема на отрезке

[ a, b ], причем все ее значения j (x) [ a, b ]. Тогда, если существует q такая, что

| (x)| £ q < 1 для всех x [ a, b ],

то процесс итерации xn+1=j (xn)(n=0, 1, 2, …) сходится независимо от начального значения x0 [ a, b ] и предельное значение x= является единственным корнем уравнения x=j (x)на отрезке [ a, b ].

Критерий завершения вычислений имеет вид: | xn+1 - xn | £ e,

где q = max|j' (x) |, при x [ a, b ] и e - заданная точность.

На рис. 4.3 приведена геометрическая интерпретация сходящегося (|j' (x) |< 1)и расходящегося (|j' (x) | > 1)итерационных процессов.

 
 
Рис. 4. 3  



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал