Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод пропорционального деления (метод хорд)






Выберем неподвижным тот конец отрезка, для которого знак функции f (x)совпадает со знаком ее второй производной f" (x). Тогда последовательные приближения xn лежат по ту сторону корня x, где функция f (x)имеет знак, противоположный знаку ее второй производной f" (x).

Например, если f" (x) > 0 при a £ x £ b, то кривая y=f (x)будет выпукла вниз.

Возможны два случая:

1) f (a) > 0, тогда x0=b (рис. 4.5) и неподвижен конец a,

xn+1= xn- (n=0, 1, 2, …);

2) f (a) < 0, тогда x0=a (рис. 4.6) и неподвижен конец b,

xn+1= xn - (n=0, 1, 2, …).

Этот метод имеет линейную сходимость, есть погрешность на (n+1) -й итерации пропорциональна погрешности на n -й итерации. В этом случае говорят, что метод первого порядка точности.

Для оценки погрешности n -го приближения корня можно воспользоваться формулой | xn-x | £ или | xn-x | £ | xn - xn-1|,

где m1 = min | f' (x)|, M1 =max| f’ (x)| для всех x [ a, b ].

 

       
   
 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал