Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Постановка задачи. К решению систем линейных алгебраических уравнений сводятся многие практические задачи
К решению систем линейных алгебраических уравнений сводятся многие практические задачи. Запишем систему линейных уравнений в векторном виде: (1), где А – матрица коэффициентов:
, . Если система (1) невырождена, то она имеет единственное решение, если же то система либо имеет бесконечное множество решений, либо вообще не имеет решений. Будем предполагать, что . Из курса алгебры известно, что систему (1) можно решить по крайней мере 3-мя способами: по формулам Крамера, методом Гаусса, матричным методом. Однако, имеются следующие трудности: Во - первых, для многих задач порядок матрицы А очень большой и поэтому при решении системы методом Крамера нужно большое количество арифметических операций; во – вторых, на окончательный результат очень сильно влияют погрешности округления промежуточных результатов. Поэтому, возникает необходимость разработки специальных вычислительных методов решения систем уравнений.
|