Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Выводы по теме. 1. Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы
1. Способ итераций дает возможность получить последовательность приближенных значений, сходящихся к точному решению системы. Для этого система приводится к виду (для случая системы из четырех уравнений): Эти формулы как раз и задают собственно итерационный процесс. 2. При этом чтобы итерационный процесс сходился к точному решению, достаточно, чтобы все коэффициенты системы были малы по сравнению с диагональными. Это условие можно сформулировать и более точно: Для сходимости процесса итераций достаточно, чтобы в каждом столбце сумма отношений коэффициентов системы к диагональным элементам, взятым из той же строки, была строго меньше единицы: 3. Следует так же сказать, что итерационный процесс может проводиться как в виде итерации Якоби, так и в виде итерации Гаусса-Зейделя. В последнем случае сходимость итерационного процесса может существенно улучшиться. Вопросы для самоконтроля 1. Каковы условия сходимости итерационного процесса при решении системы уравнений? 2. В чем суть итерационного процесса Якоби? 3. В чем суть итерационного процесса Гаусса-Зейделя? 4. При каком итерационном процессе сходимость этого процесса значительно лучше?
|