Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Функциональный ряд, его сходимость
Рассмотрим ряд, , членами которого являются функции, определенные на промежутке . При каждом фиксированном имеем числовой ряд, сходимость которого может быть исследована рассмотренными ранее методами. Сумма функционального ряда также является функцией от х: . По определению предела последовательности: если для можно указать номер (что интересно, для каждого фиксированного - свой номер, т.е. ), такой, что для выполняется неравенство , то это и означает, что функциональный ряд сходится к функции . Множество , для которого это выполняется, называется областью сходимости функционального ряда.
ПРИМЕР 1. Нахождение области сходимости функционального ряда. Равномерная сходимость функционального ряда. Пусть , т.е. функциональный ряд сходится. Если для можно указать номер независимо от , такой, что для выполняется неравенство , то говорят, что функциональный ряд сходится равномерно на множестве.
ПРИМЕР 2. Изучение сходимости функционального ряда.
Исследование на равномерную сходимость. Признак Вейерштрасса равномерной сходимости функционального ряда: если существует сходящийся числовой ряд с положительными членами, такой, что для всех , начиная с некоторого номера и всех выполняется неравенство , то функциональный ряд сходится на равномерно. Числовой ряд в этом случае называют мажорантой для функционального ряда.
|