Разностные схемы для ур-й мат физики. Явные и неявные разностные схемы, условия их устойчивости. Метод прогонки
Рассмотрим первую краевую задачу для уравнения теплопроводности. В области , нужно найти решение дифференциального уравнения:
(1) , (2)
(3)
Функции - считаются заданными. Введём сетку по с шагом и сетку по переменной с шагом 
Для функции , определённой в узлах сетки введём обозначения:
; ; ; ; Частично в дальнейшем индексы будем опускать и обозначать: ; ; ; Рассмотрим шаблоны, по некоторым будем строить разностные уравнения, аппроксимирующее дифференциальное уравнение (1)
1. Явная схема
| 2. Чисто неявная схема
|
3. Симметрическая схема
|
4. Трёхслойная схема
| Для построения разностной схемы используется шаблон , , , . в точке заменяем разностным отношением , в точке заменяем разностным отношением .Правую часть заменяем приближённой функцией , где в качестве можно взять одну из следующих функций : , .
В результате такой замены получим разностное уравнение (4)
Под разностной схемой понимается совокупность разностных схем аппроксимирующих основное дифференциальное уравнение во внутренних точках и дополнительные начальные и граничные условия в граничных узлах сетки. Разностную схему будем называть разностной задачей. В данном случае разностная задача имеет вид:
; ; 
; ; (5)
; 
Разностная задача (5) представляет собой систему линейных алгебраических уравнений с числом неизвестных равных количеству уравнений. Решения такой задачи нужно находить по слоям. Решение на нулевом слое задано начальными условиями , ; ; .
Если решение на n-ном слое известно , то решение на слое находится по явной формуле
; (6)
значения ; доопределяются из граничных условий.
Исходя из формулы (6) получается разностная схема и называется чисто явной разностной схемой.
Погрешность разностной задачи (5) определяется как разность между решением задачи (5) и решением задачи (1)-(3) в точке .Подставим в разностную систему (5). Для погрешности получаем разностную задачу:
; ; 
; ; ; 
- погрешность аппроксимации разностной задачи (5) на решение задачи (1)-(3)
Покажем, что явную разностную схему можно применять в случае если , то есть шаг по времени оказывается достаточно малым. Часто используют метод гармоник. Он заключается в том, что рассматривается однородное разностное уравнение, соответствующее уравнению (5)
(8)
При этом решение разностного уравнения (8) ищется в виде (9)
Здесь - мнимая единица, - произвольное любое действительное число, - число подлежащее определению. Подставляя (9) в (8) и сокращая на , получим откуда получаем , где (10)
Обозначим через начальное условие .Если для некоторого числа множитель станет больше единицы, то решения вида (10) будут неограниченно возрастать при , то в этом случае разностное уравнение (9) называется неустойчивым. Если для всех , то все решения вида (9) будут ограниченны и в этом случае разностное уравнение (8) называется устойчивым. В случае неустойчивости найти решение задачи (5) по формулам (6) почти невозможно, так как погрешность округления внесённых в начальный момент времени будут неограниченно возрастать при неограниченном возрастании . Такие разностные схемы называются неустойчивыми. Разностные схемы устойчивые лишь при некоторых ограничениях на отношение шагов по пространству и времени называются условно устойчивыми. Разностные схемы, устойчивые при любых шагах и называются абсолютно устойчивыми.
|