Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Элементы аналитической геометрии
Аналитическая геометрия на основе метода координат изучает геометрические объекты средствами алгебры. При этом геометрическим объектам сопоставляются уравнения (системы уравнений) так, что геометрические отношения (свойства) фигур выражаются в свойствах их уравнений. Уравнение называется уравнением поверхности (линии) в заданной системе координат, если этому уравнению удовлетворяют координаты любой точки, лежащей на этой поверхности (линии), и не удовлетворяют координаты никакой другой точки, не лежащей на этой поверхности (линии). Понятие уравнения геометрического объекта дает возможность решать геометрические задачи алгебраическими методами, не прибегая к геометрическим построениям. Например, задача нахождения точек пересечения двух линий, определяемых уравнениями и , сводится к алгебраической задаче решения системы этих уравнений.
|