Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Производная от функции по данному направлению
Пусть скалярное поле определено в области . Зафиксируем точку и выберем некоторое направление, определяемое вектором ; если существует предел , то его называют производной функции по данному направлению в заданной точке , где , , . Пусть в пространстве введена декартова система координат, тогда . Пусть функция дифференцируема в точке . Производную функции в точке по направлению вектора вычисляют по формуле . - направляющие косинусы вектора .
Пример.2.8.2 Вычислим производную скалярного поля в точке параболы по направлению кривой (в направлении возрастания абсцисс).
. Производная по направлению для плоского скалярного поля будет равна .
|