Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Достаточное условие локального экстремума
Пусть в некоторой окрестности стационарной точки функция дважды дифференцируемая и все частные производные второго порядка непрерывны в точке . Если в этой точке второй дифференциал представляет собой знакоопределенную квадратичную форму от дифференциалов независимых переменных, то в точке функция имеет локальный экстремум. При этом если () и , то в этой точке функция имеет локальный минимум (максимум). Этот случай соответствует условию где . Если в точке второй дифференциал представляет собой не строгую определенную квадратичную форму, т.е. или , что соответствует условию или , и имеется , при котором , то требуется дальнейшее исследование и вопрос о существовании экстремума в точке решается с помощью приращений функции в окрестности критической точки. Во всех остальных случаях в точке заведомо нет экстремума.
Пример.2.9.4.1 Исследовать на локальный экстремум функцию . Решение. Область определения данной функции – вся плоскость . Определим, в каких точках области определения данной функции выполняются необходимые условия существования экстремума. Частные производные функции: . Для определения координат стационарных точек функции составляем систему уравнений Отсюда и – точки возможного экстремума. Проверим выполнение достаточных условий существования экстремума в точках знакоопределенности второго дифференциала , который представлен квадратичной формой от дифференциалов . Вторые частные производные данной функции: . Рассмотрим точку . Поскольку , то – этот случай соответствует третьему условию. Следовательно, точка не является экстремальной. В точке . Отсюда , т.е. выполняется первое условие. Следовательно, – точка минимума функции, причем .
Пример. 2.9.4.2 Исследовать на экстремум функцию . Решение. Необходимые условия существования экстремума выполняются в тех точках области определения данной функции, координаты которых удовлетворяют системе уравнений т.е. Отсюда геометрическое место критических точек есть прямая . Так как во всех точках прямой , то нужно исследовать функцию на экстремум, исходя из определения. Определим знак приращения функции в точках найденной прямой: Поскольку то . Так как , то в точках прямой (а не в одной точке) функция имеет нестрогий минимум.
2. 9.5 Условный экстремум
Рассмотрим функцию при условии, что ее аргументы являются не независимыми переменными, а связаны между собой k соотношениями . Эти соотношения называются условиями связи. Пусть координаты точки удовлетворяют уравнениям связи. Функция имеет условный максимум (условный минимум) в точке , если существует такая окрестность точки , для всех точек которой , удовлетворяющих уравнениям связи , где выполняется неравенство (соответственно ). Один из методов решения задач на условный экстремум метод Лагранжа. Задача нахождения условного экстремума сводится к исследованию не безусловный экстремум функции Лагранжа: ; постоянные называются множителями Лагранжа. При этом знак второго дифференциала в стационарной точке определяет характер экстремума при условии, что дифференциалы связаны соотношениями , где при .
Решение. Графиком функции служит верхняя часть сферы. Эта функция имеет максимум в начале координат, ; если уравнение прямой есть , то геометрически ясно, что для точек этой прямой наибольшее значение функции достигается в точке , лежащей посередине между и . Точка – точка условного экстремума (максимума) функции на данной прямой, а ей соответствует точка на полусфере, аппликата которой . Решим эту задачу через функцию Лагранжа: и исследуем ее на безусловный экстремум. Стационарные точки функции определяются из системы уравнений т.е. условный экстремум исследуемой функции совпадает с безусловным экстремумом функции . Проверим выполнение достаточных условий существования экстремума в стационарной точке . С этой целью найдем вторые производные функции Лагранжа в стационарной точке . ; ; , откуда . Так как при этом , то точка есть точка максимума функции , следовательно, точка условного максимума функции , причем .
2. 9.6 Задачи на наибольшее и наименьшее значения функции
Если функция определена и непрерывна в некоторой ограниченной и замкнутой области и за исключением, быть может, отдельных точек имеет в этой области конечные частные производные, то в этой области найдется точка , в которой функция получает наибольшее и наименьшее из всех значений. Для того, чтобы найти наибольшее или наименьшее значение функции в замкнутой области, нужно найти все максимумы или минимумы функции, достигаемые внутри этой области, а также наибольшее или наименьшее значение функции на границе области. Наибольшее из всех этих чисел и будет наибольшим значением, а наименьшее – наименьшим. В задачах на отыскание наибольшего и наименьшего значений функции в замкнутой области приходится находить экстремальные значения функции на границе этой области, т.е. на некоторой линии, решая задачу исследования функции на условный экстремум.
Пример.2.9.6 Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной линиями . Решение. Так как область задания функции замкнута и функция в ней непрерывна, то она обязательно принимает наибольшее и наименьшее значения в этой функции. Исследуем функцию на экстремум внутри области задания функции. Критические точки найдем, решая систему уравнений Заметим, что только точка принадлежит области задания функции. Проверим выполнение достаточных условий существования экстремума в точке : ; ; . Так как , то . Исследуем функцию на границе области, которая состоит из отрезка оси , отрезка оси и отрезка прямой . На оси ; на оси . На отрезке прямой , уравнение которой , заданная функция пишется в виде функции одной переменной, например
.
Необходимое существование экстремума этой функции выполняется при , так как . Проверим выполнение достаточного условия существования экстремума функции в точке . Так как , то при функция имеет минимум, . Кроме того, на концах отрезка . Отсюда на , .
Эти же значения являются наибольшими и наименьшими значениями функции на границе области задания. Сравним значение функции с наибольшим и наименьшим значениями этой функции на границе области задания, делаем вывод: , .
|