Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основные виды параллельного проектирования
В геометрии рассматриваются следующие три вида параллельного проектирования. 1. Проекция точек плоскости на прямую параллельно прямой . Пусть на плоскости заданы две пересекающиеся в точке прямые и . Если точка плоскости не лежит на прямой , то проекцией точки на прямую параллельно прямой называется точка пересечения прямой с прямой, проходящей через точку параллельно прямой . Если же точка лежит на прямой , то ее проекцией на прямую параллельно прямой называют точку . Если прямые и взаимно перпендикулярны, то рассмотренный вид проектирования оказывается ортогональным проектированием на прямую . Итак: Ортогональной проекцией точки плоскости на прямую , лежащую в этой плоскости, называется точка пересечения прямой с прямой, проходящей через точку перпендикулярно прямой .
Пусть в пространстве задана плоскость и пересекающая ее в точке прямая . Если точка пространства не лежит на прямой , то проекцией ее на плоскость , параллельно прямой называется точка пересечения плоскости с прямой, проходящей через точку параллельно прямой . Если же точка лежит на прямой , то ее проекцией на плоскость параллельно прямой называют точку . Если прямая перпендикулярна плоскости , то рассматриваемый вид проектирования оказывается ортогональным. Итак: ортогональной проекцией точки на плоскость называется точка пересечения плоскости с прямой, проходящей через точку перпендикулярно плоскости .
3. Проекция точек пространства на прямую параллельно плоскости . Пусть в пространстве задана плоскость и пересекающая ее в точке прямая . Если точка пространства не лежит на плоскости , то ее проекцией на прямую параллельно плоскости называется точка пересечения прямой с плоскостью, проходящей через точку параллельно плоскости . Если же точка лежит на плоскости , то ее проекцией на прямую параллельно плоскости называют точку . Если прямая перпендикулярна плоскости , то проектирование оказывает Отметим в заключение, что ортогональное проектирование точки на прямую в пространстве можно определить и так: ортогональной проекцией точки на прямую называется точка пересечения прямой с прямой, проходящей через точку и пересекающую прямую под прямым углом. Нетрудно убедиться в том, что при любом из рассмотренных видов параллельного проектирования отрезок проектируется в отрезок, причем, середина отрезка проектируется в середину.
|