Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Изоморфизм евклидовых пространств ⇐ ПредыдущаяСтр 9 из 9
Определение. Изоморфизмом евклидовых пространств называется взаимно однозначный линейный оператор , сохраняющий скалярное произведение, т.е. удовлетворяющий условию . (6.19) Таким образом, изоморфизм евклидовых пространств – в первую очередь изоморфизм линейных пространств, и поэтому если евклидовы пространства изоморфны, то они либо оба действительные, либо оба комплексные и имеют одинаковые размерности. Теорема 6.7. Все -мерные действительные евклидовы пространства изоморфны между собой, т. е. существует единственное с точностью до изоморфизма действительное евклидово пространство. Упражнение. Докажите эту теорему по аналогии с соответствующей теоремой для линейных пространств. Такое же утверждение справедливо и для комплексных евклидовых пространств.
|