![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение. Пример 4.Найти производную функции
а) б) Пример 4. Найти производную функции Решение. Чтобы продифференцировать корень, его нужно представить в виде степени Анализируя функцию, приходим к выводу, что сумма трех слагаемых – это внутренняя функция, а возведение в степень – внешняя функция. Применяем правило дифференцирования сложной функции: Пример 5. Найти производную функции Решение. Здесь можно использовать правило дифференцирования частного, но гораздо выгоднее найти производную через правило дифференцирования сложной функции: Подготавливаем функцию для дифференцирования – выносим минус за знак производной, а косинус поднимаем в числитель: Косинус – внутренняя функция, возведение в степень – внешняя функция. Находим производную внутренней функции, косинус сбрасываем обратно вниз:
|