Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Матрица. Матричный метод.






Матрица размером m на n (n-столбцы, m –строки)-Это число столбцов, называющая таблица чисел, расположенных в определенном порядке.

Общий вид матрицы:

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто.

Определитель-это одна из основных чисел характеристик квадратной матрицы.

Действие над матрицей: сложение матрицы, умножение матрицы на число, умножение матрицы и транспонирование.

Матричный метод: Пусть дана система линейных уравнений с неизвестными (над произвольным полем):

Тогда её можно переписать в матричной форме:

, где — основная матрица системы, и — столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на — матрицу, обратную к матрице :

Так как , получаем . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невыраженность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A:

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал