Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод Гаусса. Cистемой m линейных уравнений с n неизвестными называется система вида
Cистемой m линейных уравнений с n неизвестными называется система вида где aij и bi (i =1, …, m; b =1, …, n) – некоторые известные числа, а x1, …, xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент. Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы. Числа, стоящие в правых частях уравнений, b1, …, bm называются свободными членами. Совокупность n чисел c1, …, cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1, …, cn вместо соответствующих неизвестных x1, …, xn. Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
|